Four different methods,namely mineralogical analysis,three-stage BCR sequential extraction procedure,dynamic leaching test and Hakanson Potential Ecological Risk Index Method were used to access the environmental acti...Four different methods,namely mineralogical analysis,three-stage BCR sequential extraction procedure,dynamic leaching test and Hakanson Potential Ecological Risk Index Method were used to access the environmental activity and potential ecological risks of heavy metals in zinc leaching residue.The results demonstrate that the environmental activity of heavy metals declines in the following order:CdZnCuAsPb.Potential ecological risk indices for single heavy metal are CdZnCuAsPb.Cd has serious potential ecological risk to the ecological environment and contributes most to the potential toxicity response indices for various heavy metals in the residue.展开更多
An enhanced leaching of Li fromα-spodumene was carried out using a mixture of hydrofluoric and sulfuric acid(HF/H2SO4)as the medium.Based on the optimized leaching conditions,the leaching kinetics of Li was investiga...An enhanced leaching of Li fromα-spodumene was carried out using a mixture of hydrofluoric and sulfuric acid(HF/H2SO4)as the medium.Based on the optimized leaching conditions,the leaching kinetics of Li was investigated in an ore/HF/H2SO4 ratio of 1:3:2 g:mL:mL with leaching temperature ranging from 50 to 100°C.The results indicate that the leaching kinetics of Li fitted well with a model based on the shrinking core model.In addition,the leaching rate of Li was controlled by chemical reactions and diffusion through the product layers.The apparent activation energy Ea was calculated to be 32.68 kJ/mol.Solid films were formed because of the generation of insoluble products such as cryolithionite(Na3Li2Al2F12),cryolite(Na3AlF6),calcium fluoride(CaF2),potassium cryolite(K2AlF5),aluminum fluoride(AlF3),and fluorosilicates(Na2SiF6 or KNaSiF6).Furthermore,the effects of the ore/HF ratio and leaching temperature on the leaching behavior of Li,Al and Si were investigated.The results indicate that the ore/HF ratio and leaching temperature could clearly affect the distribution of HF molecules on the leaching of Li,Al and Si,which are important for the selective leaching of Li over Al and Si with this fluorine-based chemical method.展开更多
基金Project(50925417) supported by the National Natural Science Funds for Distinguished Young Scholar of ChinaProject(2010AA065203) supported by the High Technology Research and Development Program of China+2 种基金Project(2010-609) Supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,ChinaProject(ncet-10-0840) supported by Program for New Century Excellent Talents in UniversityProject(2012FJ1080) supported by Key Projects of Science and Technology of Hunan Province,China
文摘Four different methods,namely mineralogical analysis,three-stage BCR sequential extraction procedure,dynamic leaching test and Hakanson Potential Ecological Risk Index Method were used to access the environmental activity and potential ecological risks of heavy metals in zinc leaching residue.The results demonstrate that the environmental activity of heavy metals declines in the following order:CdZnCuAsPb.Potential ecological risk indices for single heavy metal are CdZnCuAsPb.Cd has serious potential ecological risk to the ecological environment and contributes most to the potential toxicity response indices for various heavy metals in the residue.
基金Project(51474237) supported by the National Natural Science Foundation of China
文摘An enhanced leaching of Li fromα-spodumene was carried out using a mixture of hydrofluoric and sulfuric acid(HF/H2SO4)as the medium.Based on the optimized leaching conditions,the leaching kinetics of Li was investigated in an ore/HF/H2SO4 ratio of 1:3:2 g:mL:mL with leaching temperature ranging from 50 to 100°C.The results indicate that the leaching kinetics of Li fitted well with a model based on the shrinking core model.In addition,the leaching rate of Li was controlled by chemical reactions and diffusion through the product layers.The apparent activation energy Ea was calculated to be 32.68 kJ/mol.Solid films were formed because of the generation of insoluble products such as cryolithionite(Na3Li2Al2F12),cryolite(Na3AlF6),calcium fluoride(CaF2),potassium cryolite(K2AlF5),aluminum fluoride(AlF3),and fluorosilicates(Na2SiF6 or KNaSiF6).Furthermore,the effects of the ore/HF ratio and leaching temperature on the leaching behavior of Li,Al and Si were investigated.The results indicate that the ore/HF ratio and leaching temperature could clearly affect the distribution of HF molecules on the leaching of Li,Al and Si,which are important for the selective leaching of Li over Al and Si with this fluorine-based chemical method.