Recently devised new symplectic and differential-algebraic approaches to studying hidden symmetry properties of nonlinear dynamical systems on functional manifolds and their relationships to Lax integrability are revi...Recently devised new symplectic and differential-algebraic approaches to studying hidden symmetry properties of nonlinear dynamical systems on functional manifolds and their relationships to Lax integrability are reviewed. A new symplectic approach to constructing nonlinear Lax integrable dynamical systems by means of Lie-algebraic tools and based upon the Marsden-Weinstein reduction method on canonically symplectic manifolds with group symmetry, is described. Its natural relationship with the well-known Adler-Kostant-Souriau-Berezin-Kirillov method and the associated R-matrix method [1,2] is analyzed in detail. A new modified differential-algebraic approach to analyzing the Lax integrability of generalized Riemann and Ostrovsky-Vakhnenko type hydrodynamic equations is suggested and the corresponding Lax representations are constructed in exact form. The related bi-Hamiltonian integrability and compatible Poissonian structures of these generalized Riemann type hierarchies are discussed by means of the symplectic, gradientholonomic and geometric methods.展开更多
An isospectral problem with four potentials is discussed. The corresponding hierarchy of Lax integrable evolution equations is derived. For the hierarchy, it is shown that there exist other new reductions except thos... An isospectral problem with four potentials is discussed. The corresponding hierarchy of Lax integrable evolution equations is derived. For the hierarchy, it is shown that there exist other new reductions except those presented by Tu, Meng and Ma. For each reduction case the relevant Hamiltonian structure is established by means of trace identity.展开更多
It is shown that the Kaup-Newell hierarchy can be derived from the so-called generating equations which are Lax integrable. Positive and negative flows in the hierarchy are derived simultaneously. The generating equat...It is shown that the Kaup-Newell hierarchy can be derived from the so-called generating equations which are Lax integrable. Positive and negative flows in the hierarchy are derived simultaneously. The generating equations and mutual commutativity of these flows enable us to construct new Lax integrable equations.展开更多
文摘Recently devised new symplectic and differential-algebraic approaches to studying hidden symmetry properties of nonlinear dynamical systems on functional manifolds and their relationships to Lax integrability are reviewed. A new symplectic approach to constructing nonlinear Lax integrable dynamical systems by means of Lie-algebraic tools and based upon the Marsden-Weinstein reduction method on canonically symplectic manifolds with group symmetry, is described. Its natural relationship with the well-known Adler-Kostant-Souriau-Berezin-Kirillov method and the associated R-matrix method [1,2] is analyzed in detail. A new modified differential-algebraic approach to analyzing the Lax integrability of generalized Riemann and Ostrovsky-Vakhnenko type hydrodynamic equations is suggested and the corresponding Lax representations are constructed in exact form. The related bi-Hamiltonian integrability and compatible Poissonian structures of these generalized Riemann type hierarchies are discussed by means of the symplectic, gradientholonomic and geometric methods.
基金the Postdoctoral Science Foundation of China,Chinese National Basic Research Project "Mathematics Mechanization and a Platform for Automated Reasoning".
文摘 An isospectral problem with four potentials is discussed. The corresponding hierarchy of Lax integrable evolution equations is derived. For the hierarchy, it is shown that there exist other new reductions except those presented by Tu, Meng and Ma. For each reduction case the relevant Hamiltonian structure is established by means of trace identity.
基金Supported by the Chinese Basic Research Project"Nonlinear Science"
文摘It is shown that the Kaup-Newell hierarchy can be derived from the so-called generating equations which are Lax integrable. Positive and negative flows in the hierarchy are derived simultaneously. The generating equations and mutual commutativity of these flows enable us to construct new Lax integrable equations.