The experimental data obtained from yaw-roll coupled wind tunnel tests are used for lateral-directional departure prediction,by linearizing the_b model to extract nominal dynamic derivatives at each coupling ratio.The...The experimental data obtained from yaw-roll coupled wind tunnel tests are used for lateral-directional departure prediction,by linearizing the_b model to extract nominal dynamic derivatives at each coupling ratio.The prediction results are compared with those of the existing engineering methods which are based on the conventional aerodynamic derivatives.The comparison shows that the yaw-roll coupling ratio has a great influence on the departure susceptibility.The departure resistance will loss in partial region of the coupling ratio when the angle of attack is higher than a critical value.According to the stable and unstable regions of coupling ratio,a two-segment stability augmentation system with two different feedback gain matrices is obtained by pole-placement method.The two-segment stability augmentation system is used in the simulations of straight and level flight,steady turn,spin recovery and Herbst maneuver.The simulation results are also compared with the applications of a fixed-gain stability augmentation system designed by the conventional aerodynamic derivatives.When the yaw-roll coupling effects are fully considered,the two-segment stability augmentation system is more effective for departure restraint and can provide a better flying quality with less control energy.展开更多
Experimental investigation of large amplitude yaw-roll coupled oscillations was conducted in a low-speed wind tunnel using an aircraft configuration model. A special test rig was designed and constructed to provide di...Experimental investigation of large amplitude yaw-roll coupled oscillations was conducted in a low-speed wind tunnel using an aircraft configuration model. A special test rig was designed and constructed to provide different coupled motions from low to high angles of attack.A parameter ‘‘coupling ratio" was introduced to indicate the extent of yaw-roll coupling. At each pitch angle, seven coupling ratios were designed to study the yaw-roll coupling effects on the lateraldirectional aerodynamic characteristics systematically. At high angles of attack, the damping characteristics of yawing and rolling moments drastically varied with coupling ratios. In the coupled motions with the rotation taking place about the wind axis, the lateral-directional aerodynamic moments exhibited unsteady characteristics and were different from the ‘‘quasi-steady" results of the rotary balance tests. The calculated results of the traditional aerodynamic derivative method were also compared with the experimental data. At low and very high angles of attack, the aerodynamic derivative method was applicative. However, within a wide range of angles of attack, the calculated results of aerodynamic derivative method were inconsistent with the experimental data, due to the drastic changes of damping characteristics of lateral-directional aerodynamic moments with yaw-roll coupling ratios.展开更多
Computational simulations of aerodynamic characteristics of the Common Research Model (CRM), representing a typical transport airliner are conducted using CFD methods in close proximity to the ground. The obtained dep...Computational simulations of aerodynamic characteristics of the Common Research Model (CRM), representing a typical transport airliner are conducted using CFD methods in close proximity to the ground. The obtained dependencies on bank angle for aerodynamic forces and moments are further used in stability and controllability analysis of the lateral-directional aircraft motion. Essential changes in the lateral-directional modes in close proximity to the ground have been identified. For example, with approach to the ground, the roll subsidence and spiral eigenvalues are merging creating the oscillatory Roll-Spiral mode with quite significant frequency. This transformation of the lateral-directional dynamics in piloted simulation may affect the aircraft responses to external crosswind, modify handling quality characteristics and improve realism of crosswind landing. The material of this paper was presented at the Seventh European Conference for Aeronautics and Space Sciences EUCASS-2017. Further work is carried out for evaluation of the ground effect aerodynamics for a high-lift configuration based on a hybrid geometry of DLR F11 and NASA GTM models with fully deployed flaps and slats. Some aspects of grid generation for a high lift configuration using structured blocking approach are discussed.展开更多
The potential benefits of hybrid-electric or all-electric propulsion have led to a growing interest in this topic over the past decade.Preliminary design of propulsion systems and innovative configurations has been ex...The potential benefits of hybrid-electric or all-electric propulsion have led to a growing interest in this topic over the past decade.Preliminary design of propulsion systems and innovative configurations has been extensively discussed in literature,but steps towards higher levels of technological readiness,optimisation algorithms based on reliable weight estimation and simulationbased mission analysis are required.This paper focuses on the integration of a method for evaluating the lateral-directional controllability of an aircraft within a design chain that integrates aero-propulsive interactions,accurate modelling of the fuel system,and mid-fidelity estimation of the structural weight.Furthermore,the present work proposes a strategy for powerplant management in scenarios with an inoperative chain element.Benefits of hybrid-electric propulsion on the design of the vertical tail plane are evaluated involving the analysis of multiple failure scenarios and certification requirements.The proposed application concerns a commuter aircraft.展开更多
A new identification method is proposed to solve the problem of the influence on the loaded excitation signals brought by high feedback gain augmentation in lateral-directional aerodynamic parameters identification of...A new identification method is proposed to solve the problem of the influence on the loaded excitation signals brought by high feedback gain augmentation in lateral-directional aerodynamic parameters identification of fly-by-wire(FBW) passenger airliners. Taking for example an FBW passenger airliner model with directional relaxed-static-stability, through analysis of its signal energy distribution and airframe frequency response, a new method is proposed for signal type selection, signal parameters design, and the appropriate frequency relationship between the aileron and rudder excitation signals. A simulation validation is presented of the FBW passenger airliner's lateral-directional aerodynamic parameters identification. The validation result demonstrates that the designed signal can excite the lateral-directional motion mode of the FBW passenger airliner adequately and persistently. Meanwhile, the relative errors of aerodynamic parameters are less than 5%.展开更多
Installing winglets can notably improve the aerodynamic performance of solar aircraft.This paper proposes a multi-constraints optimization method of winglets for solar aircraft,aiming to enhance the corresponding unin...Installing winglets can notably improve the aerodynamic performance of solar aircraft.This paper proposes a multi-constraints optimization method of winglets for solar aircraft,aiming to enhance the corresponding uninterrupted cruising capability.An optimization objective function is formed and is separately studied in aerodynamic and structural terms.Qualitative analysis shows that the winglet design parameters are restricted by four special constraints(geometry,aerodynamics,energy and stability)of solar aircraft.The optimization process is constructed on the basis of a multi-island genetic algorithm,and carried out for a 15 m wingspan solar aircraft.Although the designed winglet is not as good as the traditional winglet in terms of drag and structural weight,the designed winglet provides a better 24 h cruising capability.The sensitivity between the objective function and the design parameters is investigated,and the winglet effects vary with respect to the wing aspect ratio(AR=10,15,19.6).The effect of the constraints is analysed quantitatively,and some basic laws are obtained.Moreover,the feasible design region and the possible optimal design parameters of winglets for different wing configurations are explored.The calculation results show that when the aspect ratio exceeds a certain value,the winglets will not benefit the aircraft.展开更多
基金supported by the National Natural Science Foundation of China(No.11872209)
文摘The experimental data obtained from yaw-roll coupled wind tunnel tests are used for lateral-directional departure prediction,by linearizing the_b model to extract nominal dynamic derivatives at each coupling ratio.The prediction results are compared with those of the existing engineering methods which are based on the conventional aerodynamic derivatives.The comparison shows that the yaw-roll coupling ratio has a great influence on the departure susceptibility.The departure resistance will loss in partial region of the coupling ratio when the angle of attack is higher than a critical value.According to the stable and unstable regions of coupling ratio,a two-segment stability augmentation system with two different feedback gain matrices is obtained by pole-placement method.The two-segment stability augmentation system is used in the simulations of straight and level flight,steady turn,spin recovery and Herbst maneuver.The simulation results are also compared with the applications of a fixed-gain stability augmentation system designed by the conventional aerodynamic derivatives.When the yaw-roll coupling effects are fully considered,the two-segment stability augmentation system is more effective for departure restraint and can provide a better flying quality with less control energy.
基金supported by the National Natural Science Foundation of China (No. 11072111)
文摘Experimental investigation of large amplitude yaw-roll coupled oscillations was conducted in a low-speed wind tunnel using an aircraft configuration model. A special test rig was designed and constructed to provide different coupled motions from low to high angles of attack.A parameter ‘‘coupling ratio" was introduced to indicate the extent of yaw-roll coupling. At each pitch angle, seven coupling ratios were designed to study the yaw-roll coupling effects on the lateraldirectional aerodynamic characteristics systematically. At high angles of attack, the damping characteristics of yawing and rolling moments drastically varied with coupling ratios. In the coupled motions with the rotation taking place about the wind axis, the lateral-directional aerodynamic moments exhibited unsteady characteristics and were different from the ‘‘quasi-steady" results of the rotary balance tests. The calculated results of the traditional aerodynamic derivative method were also compared with the experimental data. At low and very high angles of attack, the aerodynamic derivative method was applicative. However, within a wide range of angles of attack, the calculated results of aerodynamic derivative method were inconsistent with the experimental data, due to the drastic changes of damping characteristics of lateral-directional aerodynamic moments with yaw-roll coupling ratios.
文摘Computational simulations of aerodynamic characteristics of the Common Research Model (CRM), representing a typical transport airliner are conducted using CFD methods in close proximity to the ground. The obtained dependencies on bank angle for aerodynamic forces and moments are further used in stability and controllability analysis of the lateral-directional aircraft motion. Essential changes in the lateral-directional modes in close proximity to the ground have been identified. For example, with approach to the ground, the roll subsidence and spiral eigenvalues are merging creating the oscillatory Roll-Spiral mode with quite significant frequency. This transformation of the lateral-directional dynamics in piloted simulation may affect the aircraft responses to external crosswind, modify handling quality characteristics and improve realism of crosswind landing. The material of this paper was presented at the Seventh European Conference for Aeronautics and Space Sciences EUCASS-2017. Further work is carried out for evaluation of the ground effect aerodynamics for a high-lift configuration based on a hybrid geometry of DLR F11 and NASA GTM models with fully deployed flaps and slats. Some aspects of grid generation for a high lift configuration using structured blocking approach are discussed.
基金The ELICA project leading to this application has received funding from the Clean Sky 2 Joint Undertaking(JU)(No.864551)The JU receives support from the European Union’s Horizon 2020 research and innovation programme。
文摘The potential benefits of hybrid-electric or all-electric propulsion have led to a growing interest in this topic over the past decade.Preliminary design of propulsion systems and innovative configurations has been extensively discussed in literature,but steps towards higher levels of technological readiness,optimisation algorithms based on reliable weight estimation and simulationbased mission analysis are required.This paper focuses on the integration of a method for evaluating the lateral-directional controllability of an aircraft within a design chain that integrates aero-propulsive interactions,accurate modelling of the fuel system,and mid-fidelity estimation of the structural weight.Furthermore,the present work proposes a strategy for powerplant management in scenarios with an inoperative chain element.Benefits of hybrid-electric propulsion on the design of the vertical tail plane are evaluated involving the analysis of multiple failure scenarios and certification requirements.The proposed application concerns a commuter aircraft.
文摘A new identification method is proposed to solve the problem of the influence on the loaded excitation signals brought by high feedback gain augmentation in lateral-directional aerodynamic parameters identification of fly-by-wire(FBW) passenger airliners. Taking for example an FBW passenger airliner model with directional relaxed-static-stability, through analysis of its signal energy distribution and airframe frequency response, a new method is proposed for signal type selection, signal parameters design, and the appropriate frequency relationship between the aileron and rudder excitation signals. A simulation validation is presented of the FBW passenger airliner's lateral-directional aerodynamic parameters identification. The validation result demonstrates that the designed signal can excite the lateral-directional motion mode of the FBW passenger airliner adequately and persistently. Meanwhile, the relative errors of aerodynamic parameters are less than 5%.
文摘Installing winglets can notably improve the aerodynamic performance of solar aircraft.This paper proposes a multi-constraints optimization method of winglets for solar aircraft,aiming to enhance the corresponding uninterrupted cruising capability.An optimization objective function is formed and is separately studied in aerodynamic and structural terms.Qualitative analysis shows that the winglet design parameters are restricted by four special constraints(geometry,aerodynamics,energy and stability)of solar aircraft.The optimization process is constructed on the basis of a multi-island genetic algorithm,and carried out for a 15 m wingspan solar aircraft.Although the designed winglet is not as good as the traditional winglet in terms of drag and structural weight,the designed winglet provides a better 24 h cruising capability.The sensitivity between the objective function and the design parameters is investigated,and the winglet effects vary with respect to the wing aspect ratio(AR=10,15,19.6).The effect of the constraints is analysed quantitatively,and some basic laws are obtained.Moreover,the feasible design region and the possible optimal design parameters of winglets for different wing configurations are explored.The calculation results show that when the aspect ratio exceeds a certain value,the winglets will not benefit the aircraft.