Laser-induced breakdown spectroscopy (LIBS) has been regarded as a future superstar for chemical analysis for years due to its unique features such as little or no sample preparation, remote sensing, and fast and mu...Laser-induced breakdown spectroscopy (LIBS) has been regarded as a future superstar for chemical analysis for years due to its unique features such as little or no sample preparation, remote sensing, and fast and multi-element analysis. Chinese LIBS comnmnity is one of the most dynamically developing communities in the World. The aim of the work is to inspect what have been done in China for LIBS development and, based on the understanding of the overall status, to identify the challenges and opportunities for the future development. In this paper, the scientific contributions from Chinese LIBS comlnunity are reviewed for the following four aspects: fimdamentals, instrumentation, data processing and modeling, and applications; and the driving force of LIBS development in China is analyzed, the critical issues for successful LIBS application are discussed, and in our opinion, the potential direction to improve the technology and to realize large scale commercialization in China is proposed.展开更多
Laser-induced breakdown spectroscopy(LIBS)has been widely studied due to its unique advantages such as remote sensing,real-time multi-elemental detection and none-to-little damage.With the efforts of researchers aroun...Laser-induced breakdown spectroscopy(LIBS)has been widely studied due to its unique advantages such as remote sensing,real-time multi-elemental detection and none-to-little damage.With the efforts of researchers around the world,LIBS has been developed by leaps and bounds.Moreover,in recent years,more and more Chinese LIBS researchers have put tremendous energy in promoting LIBS applications.It is worth mentioning that the application of LIBS in a specific field has its special application background and technical difficulties,therefore it may develop in different stages.A review summarizing the current development status of LIBS in various fields would be helpful for the development of LIBS technology as well as its applications especially for Chinese LIBS community since most of the researchers in this field work in application.In the present work,we summarized the research status and latest progress of main research groups in coal,metallurgy,and water,etc.Based on the current research status,the challenges and opportunities of LIBS were evaluated,and suggestions were made to further promote LIBS applications.展开更多
Additive manufacturing(AM)is an emerging customized three-dimensional(3D)functional product fabrication technology.It provides a higher degree of design freedom,reduces manufacturing steps,cost and production cycles.H...Additive manufacturing(AM)is an emerging customized three-dimensional(3D)functional product fabrication technology.It provides a higher degree of design freedom,reduces manufacturing steps,cost and production cycles.However,existing metallic component 3D printing techniques are mainly for the manufacture of single material components.With the increasing commercial applications of AM technologies,the need for 3D printing of more than one type of dissimilar materials in a single component increases.Therefore,investigations on multi-material AM(MMAM)emerge over the past decade.Lasers are currently widely used for the AM of metallic components where high temperatures are involved.Here we report the progress and trend in laser-based macro-and micro-scale AM of multiple metallic components.The methods covered in this paper include laser powder bed fusion,laser powder directed energy deposition,and laser-induced forward transfer for MMAM applications.The principles and process/material characteristics are described.Potential applications and challenges are discussed.Finally,future research directions and prospects are proposed.展开更多
Laser-induced plasma represents today a widespread spectroscopic emission source. It can be easily generated using compact and reliable nanosecond pulsed laser on a large variety of materials. Its application for spec...Laser-induced plasma represents today a widespread spectroscopic emission source. It can be easily generated using compact and reliable nanosecond pulsed laser on a large variety of materials. Its application for spectrochemical analysis for example with laser-induced breakdown spectroscopy (LIBS) has become so popular that one tends to forget the complex physical and chemical processes leading to its generation and governing its evolution. The purpose of this review article is to summarize the backgrounds necessary to understand and describe the laser-induced plasma from its generation to its expansion into the ambient gas. The objective is not to go into the details of each process; there are numerous specialized papers and books for that in the literature. The goal here is to gather in a same paper the essential understanding elements needed to describe laser-induced plasma as results from a complex process. These elements can be dispersed in several related but independent fields such as laser-matter interaction, laser ablation of material, optical and thermo-dynamic properties of hot and ionized gas, or plasma propagation in a background gas. We believe that presenting the ensemble of understanding elements of laser-induced plasma in a comprehensive way and in limited pages of this paper will be helpful for further development and optimized use of the LIBS technique. Experimental results obtained in our laboratory are used to illustrate the studied physical processes each time such illustration becomes possible and helpful.展开更多
Recent progress on the application of laser-induced breakdown spectroscopy (LIBS) for metallurgical analysis particularly achieved by Chinese research community is briefly reviewed in this article. The content is ma...Recent progress on the application of laser-induced breakdown spectroscopy (LIBS) for metallurgical analysis particularly achieved by Chinese research community is briefly reviewed in this article. The content is mainly focused on the progress in experimental research and calibration methods toward LIBS applications for metallurgical online analysis over the past few years. Different experiment setups such as single-pulse and double-pulses LIBS schematics are introduced. Various calibration methods for different metallic samples are presented. Quantitative results reported in the literature and obtained in the analysis of various samples with different calibration methods are summarized. At the last section of this article, the difficulties of LIBS application for molten metal analysis in a furnace are discussed.展开更多
Soot,which is produced in fuel-rich parts of flames as a result of incomplete combustion of hydrocarbons,is the No.2 contributor to global warming after carbon dioxide.Developing soot measurement techniques is importa...Soot,which is produced in fuel-rich parts of flames as a result of incomplete combustion of hydrocarbons,is the No.2 contributor to global warming after carbon dioxide.Developing soot measurement techniques is important to understand soot formation mechanism and control soot emission.The various soot measurement techniques,such as thermophoretic sampling par-ticles diagnostics followed by electron microscopy analysis,thermocouple particle densitometry,light extinction,laser-induced incandescence,two-color method,and emission computed tomography,are reviewed in this paper.The measurement principle and application cases of these measurement methods are described in detail.The development trend of soot measurement is to realize the on-line measurement of multi-dimensional distributions of temperature,soot volume fraction,soot particle size and other parameters in hydrocarbon-air flames.Soot measurement techniques suitable for both small flames in laboratories and large-scale flames in industrial combustion devices should be developed.Besides,in some special situations,such as high-pressure,zero gravity and micro-gravity flames,soot measurement also should be provided.展开更多
Three major elements, carbon, hydrogen, and nitrogen, in twenty-four bituminous coal samples, were measured by laser-induced breakdown spectroscopy. Argon and helium were applied as ambient gas to enhance the signals ...Three major elements, carbon, hydrogen, and nitrogen, in twenty-four bituminous coal samples, were measured by laser-induced breakdown spectroscopy. Argon and helium were applied as ambient gas to enhance the signals and eliminate the interference of nitrogen from surrounding air. The relative standard deviation of the related emission lines and the performance in the partial least squares (PLS) modeling were compared for different ambient environments. The results showed that argon not only improved the intensity, but also reduced signal fluctuation. The PLS model also had the optimal performance in multi-element analysis using argon as ambient gas. The root mean square error of prediction of carbon concentration decreased from 4.25% in air to 3.49% in argon, while the average relative error reduced from 4.96% to 2.98%. Hydrogen line demonstrated similar improvement. Yet, the nitrogen lines were too weak to be detected even in an argon environment which suggested the nitrogen signal measured in air come from the breakdown of nitrogen molecules in the atmosphere.展开更多
In recent years,femtosecond(fs)-lasers have evolved into a versatile tool for high precision micromachining of transparent materials because nonlinear absorption in the focus can result in refractive index modificatio...In recent years,femtosecond(fs)-lasers have evolved into a versatile tool for high precision micromachining of transparent materials because nonlinear absorption in the focus can result in refractive index modifications or material disruptions.However,when high pulse energies or low numerical apertures are required,nonlinear side effects such as self-focusing,filamentation or white light generation can decrease the modification quality.In this paper,we apply simultaneous spatial and temporal focusing(SSTF)to overcome these limitations.The main advantage of SSTF is that the ultrashort pulse is only formed at the focal plane,thereby confining the intensity distribution strongly to the focal volume and suppressing detrimental nonlinear side effects.Thus,we investigate the optical breakdown within a water cell by pump-probe shadowgraphy,comparing conventional focusing and SSTF under equivalent focusing conditions.The plasma formation is well confined for low pulse energies,2 mJ,but higher pulse energies lead to the filamentation and break-up of the disruptions for conventional focusing,thereby decreasing the modification quality.In contrast,plasma induced by SSTF stays well confined to the focal plane,even for high pulse energies up to 8 mJ,preventing extended filaments,side branches or break-up of the disruptions.Furthermore,while conventional focusing leads to broadband supercontinuum generation,only marginal spectral broadening is observed using SSTF.These experimental findings are in excellent agreement with numerical simulations of the nonlinear pulse propagation and interaction processes.Therefore,SSTF appears to be a powerful tool to control the processing of transparent materials,e.g.,for precise ophthalmic fs-surgery.展开更多
Terahertz(THz)wave generation from laser-induced air plasma generally requires a short temporal laser pulse.In contrast,it was observed that THz radiation from ionized liquid water prefers a longer pulse,wherein the m...Terahertz(THz)wave generation from laser-induced air plasma generally requires a short temporal laser pulse.In contrast,it was observed that THz radiation from ionized liquid water prefers a longer pulse,wherein the mechanism remains unclear.We attribute the preference for longer pulse duration to the process of ionization and plasma formation in water,which is supported by a numerical simulation result showing that the highest electron density is achieved with a subpicosecond pulse.The explanation is further verified by the coincidence of our experimental result and simulation when the thickness of the water is varied.Other liquids are also tested to assure the preference for such a pulse is not exclusive to water.展开更多
Laser-induced breakdown spectroscopy (LIBS) has been used to detect atomic species in various enviromnents. The quantitative analysis (C, H, O, N and S) of representative coal samples are being carried out with LI...Laser-induced breakdown spectroscopy (LIBS) has been used to detect atomic species in various enviromnents. The quantitative analysis (C, H, O, N and S) of representative coal samples are being carried out with LIBS, and the effects of particle size are analyzed. A powerful pulse Nd:YAG laser is focused on the coal sample at atmosphere pressure, and the emission spectra from laser-induced plasmas are measured by time-resolved spectroscopy, and the intensity of analyzed spectral lines is obtained through observing the laser plasma with a delay time of 0.4 #s. The experimental results show that the slope of calibration curve is nearly 1 when the concentration of the analyzed element is relatively low, and the slope of curve is nearly 0.5 when the concentration of C is higher than other elements. In addition, using the calibration-free model without self-absorption effect, the results show that the decreasing of particle size leads to an increase of the plasma temperature.展开更多
Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtos...Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos.展开更多
A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors,...A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors, such as laser pulse energy, repetition rate and argon flow rate, that influence laser-induced breakdown spectroscopy (LIBS) analytical performance are investigated in detail. Under the optimal experiment conditions, the relative standard deviations for C, Si, Mn, Ni, Cr and Cu are 3.3%-8.9%, 0.9%-2.8%, 1.2%-4.1%, 1.7%-3.0%, 1.1%-3.4% and 2.5%-8.5%, respectively, with the corresponding relative errors of 1.1%-7.9%, 1.0%-6.3%, 0.4%-3.9%, 1.5%-6.3%, 1.2%-4.0% and 1.2%-6.4%. Compared with the results of the traditional spark discharge optical emission spectrometry technique, the analytical performance of LIBS is just a little inferior due to the less stable laser-induced plasma and smaller amount of ablated sample by the laser. However, the precision, detection limits and accuracy of LIBS obtained in our present work were sufficient to meet the requirements for process analysis. These technical performances of higher stability of output energy and longer service life for DPSSL, in comparison to the Q-switch laser pumped by xeon lamp, qualify it well for the real time online analysis for different industrial applications.展开更多
Femtosecond laser-induced breakdown spectroscopy (fs-LIBS) is employed to analyze the element content in poplar tree leaves from four representative locations in Changchun City (Jingyue National Forest Park,JYP),Chang...Femtosecond laser-induced breakdown spectroscopy (fs-LIBS) is employed to analyze the element content in poplar tree leaves from four representative locations in Changchun City (Jingyue National Forest Park,JYP),Changchun University of Science and Technology (CUST),Casting Factory (CF) and Forging Factory (FF) of First Automobile Works (FAW) under identical experimental conditions.Those elements of N,P,K,Ca,Fe,Ti,Mn and Na are identified in the poplar tree leaves from the recorded spectrogram and the elemental content in the leaves is further obtained by applying free calibration method to the spectrogram.Our results show that the elements Ca and Fe in the poplar tree leaves from the CF area have the highest concentration in the four locations,which is a factor of 2.05 and 1.66 respectively to those of JYP.This experiment demon-strates that fs-LIBS can be utilized to analyze element content in a sample and find new applications in the environmental detection.展开更多
Liquid-assisted laser ablation has the advantage of relieving thermal effects of common laser ablation processes, whereas the light scattering and shielding effects by laser-induced cavitation bubbles, suspended debri...Liquid-assisted laser ablation has the advantage of relieving thermal effects of common laser ablation processes, whereas the light scattering and shielding effects by laser-induced cavitation bubbles, suspended debris, and turbulent liquid flow generally deteriorate laser beam transmission stability, leading to low energy efficiency and poor surface quality. Here, we report that a continuous and directional high-speed microjet will form in the laser ablation zone if laser-induced primary cavitation bubbles asymmetrically collapse sequentially near the air-liquid interface under a critical thin liquid layer. The laser-induced microjet can instantaneously and directionally remove secondary bubbles and ablation debris around the laser ablation region, and thus a very stable material removal process can be obtained. The shadowgraphs of high-speed camera reveal that the average speed of laser-induced continuous microjet can be as high as 1.1 m sin its initial 500 μm displacement. The coupling effect of laser ablation, mechanical impact along with the collapse of cavitation bubbles and flushing of high-speed microjet helps achieve a high material removal rate and significantly improved surface quality. We name this uncovered liquid-assisted laser ablation process as laser-induced microjet-assisted ablation(LIMJAA) based on its unique characteristics. High-quality microgrooves with a large depth-to-width ratio of 5.2 are obtained by LIMJAA with a single-pass laser scanning process in our experiments. LIMJAA is capable of machining various types of difficult-to-process materials with high-quality arrays of micro-channels, square and circle microscale through-holes. The results and disclosed mechanisms in our work provide a deep understanding of the role of laser-induced microjet in improving the processing quality of liquid-assisted laser micromachining.展开更多
Laser-induced breakdown spectroscopy (LIBS) has attracted much attention in terms of both scientific research and industrial application. An important branch of LIBS research in Asia, the development of data process...Laser-induced breakdown spectroscopy (LIBS) has attracted much attention in terms of both scientific research and industrial application. An important branch of LIBS research in Asia, the development of data processing methods for LIBS, is reviewed. First, the basic principle of LIBS and the characteristics of spectral data are briefly introduced. Next, two aspects of research on and problems with data processing methods are described: i) the basic principles of data preprocessing methods are elaborated in detail on the basis of the characteristics of spectral data; ii) the performance of data analysis methods in qualitative and quantitative analysis of LIBS is described. Finally, a direction for future development of data processing methods for LIBS is also proposed.展开更多
Conventional firefighting clothing and fire masks can protect firemen’s safety to a certain extent,whereas cannot perceive environmental hazards and monitor their physical status in real time.Herein,we fabricated two...Conventional firefighting clothing and fire masks can protect firemen’s safety to a certain extent,whereas cannot perceive environmental hazards and monitor their physical status in real time.Herein,we fabricated two kinds of Janus graphene/poly(pphenylene benzobisoxazole)(PBO)fabrics by laser direct writing approach and evaluated their performance as intelligent firefighting clothes and fire masks.The results showed that the Janus graphene/PBO fabrics were virtually non-combustible and achieved the highest thermal protection time of 18.91 s ever reported in flame,which is due to the intrinsic flame-retardant nature of PBO fibers.The graphene/PBO woven fabrics-based sensor showed good repeatability and stability in human motion monitoring and NO_(2)gas detection.Furthermore,the piezoelectric fire mask was assembled with graphene/PBO nonwoven fabric as electrode layer and polyvinylidene fluoride(PVDF)electrostatic direct writing film as piezoelectric layer.The filtration efficiency of the fire mask reaches 95%for PM_(2.5)and 100%for PM_(3.0),indicating its effective filtration capability for smoke particles in fires.The respiratory resistance of the piezoelectric fire mask(46.8 Pa)was lower than that of commercial masks(49 Pa),showing that it has good wearing comfort.Besides,the piezoelectric fire mask can be sensitive to the speed and intensity of human breathing,which is essential for indirectly reflecting the health of the human body.Consequently,this work provides a facile approach to fabricate next-generation intrinsic flame-retardant smart textiles for smart firefighting.展开更多
Reaction-bonded silicon carbide(RB-SiC)is an excellent engineering material with high hardness,stiffness,and resistance to chemical wear.However,its widespread use is hindered due to the properties mentioned above,mak...Reaction-bonded silicon carbide(RB-SiC)is an excellent engineering material with high hardness,stiffness,and resistance to chemical wear.However,its widespread use is hindered due to the properties mentioned above,making it difficult to machine functional surface structures through mechanical and chemical methods.This study investigated the fundamental characteristics of laser-induced periodic surface structures(LIPSSs)on RB-SiC via femtosecond pulsed laser irradiation at a wavelength of 1028 nm.Low-spatial-frequency LIPSS(LSFL)and high-spatial-frequency LIPSS(HSFL)formed on the surface along directions perpendicular to the laser polarization.SiC grains surrounded by a large amount of Si show a reduced threshold for LIPSS formation.By varying laser fluence and scanning speed,HSFL-LSFL hybrid structures were generated on the SiC grains.Transmission electron microscopy observations and Raman spectroscopy were carried out to understand the formation mechanism of the hybrid LIPSS.A possible mechanism based on the generation of multiple surface electromagnetic waves due to the nonlinear response of SiC was proposed to explain the hybrid structure formation.Furthermore,the direction of laser scanning with respect to laser polarization affects the uniformity of the generated LIPSS.展开更多
基金The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant No. 51276100) and the National Basic Research Program of China (973 Program) (Grant No. 2013CB228501).
文摘Laser-induced breakdown spectroscopy (LIBS) has been regarded as a future superstar for chemical analysis for years due to its unique features such as little or no sample preparation, remote sensing, and fast and multi-element analysis. Chinese LIBS comnmnity is one of the most dynamically developing communities in the World. The aim of the work is to inspect what have been done in China for LIBS development and, based on the understanding of the overall status, to identify the challenges and opportunities for the future development. In this paper, the scientific contributions from Chinese LIBS comlnunity are reviewed for the following four aspects: fimdamentals, instrumentation, data processing and modeling, and applications; and the driving force of LIBS development in China is analyzed, the critical issues for successful LIBS application are discussed, and in our opinion, the potential direction to improve the technology and to realize large scale commercialization in China is proposed.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.61575073)Huazhong University of Science and Technology(No.2020kfyXGYJ105).
文摘Laser-induced breakdown spectroscopy(LIBS)has been widely studied due to its unique advantages such as remote sensing,real-time multi-elemental detection and none-to-little damage.With the efforts of researchers around the world,LIBS has been developed by leaps and bounds.Moreover,in recent years,more and more Chinese LIBS researchers have put tremendous energy in promoting LIBS applications.It is worth mentioning that the application of LIBS in a specific field has its special application background and technical difficulties,therefore it may develop in different stages.A review summarizing the current development status of LIBS in various fields would be helpful for the development of LIBS technology as well as its applications especially for Chinese LIBS community since most of the researchers in this field work in application.In the present work,we summarized the research status and latest progress of main research groups in coal,metallurgy,and water,etc.Based on the current research status,the challenges and opportunities of LIBS were evaluated,and suggestions were made to further promote LIBS applications.
文摘Additive manufacturing(AM)is an emerging customized three-dimensional(3D)functional product fabrication technology.It provides a higher degree of design freedom,reduces manufacturing steps,cost and production cycles.However,existing metallic component 3D printing techniques are mainly for the manufacture of single material components.With the increasing commercial applications of AM technologies,the need for 3D printing of more than one type of dissimilar materials in a single component increases.Therefore,investigations on multi-material AM(MMAM)emerge over the past decade.Lasers are currently widely used for the AM of metallic components where high temperatures are involved.Here we report the progress and trend in laser-based macro-and micro-scale AM of multiple metallic components.The methods covered in this paper include laser powder bed fusion,laser powder directed energy deposition,and laser-induced forward transfer for MMAM applications.The principles and process/material characteristics are described.Potential applications and challenges are discussed.Finally,future research directions and prospects are proposed.
文摘Laser-induced plasma represents today a widespread spectroscopic emission source. It can be easily generated using compact and reliable nanosecond pulsed laser on a large variety of materials. Its application for spectrochemical analysis for example with laser-induced breakdown spectroscopy (LIBS) has become so popular that one tends to forget the complex physical and chemical processes leading to its generation and governing its evolution. The purpose of this review article is to summarize the backgrounds necessary to understand and describe the laser-induced plasma from its generation to its expansion into the ambient gas. The objective is not to go into the details of each process; there are numerous specialized papers and books for that in the literature. The goal here is to gather in a same paper the essential understanding elements needed to describe laser-induced plasma as results from a complex process. These elements can be dispersed in several related but independent fields such as laser-matter interaction, laser ablation of material, optical and thermo-dynamic properties of hot and ionized gas, or plasma propagation in a background gas. We believe that presenting the ensemble of understanding elements of laser-induced plasma in a comprehensive way and in limited pages of this paper will be helpful for further development and optimized use of the LIBS technique. Experimental results obtained in our laboratory are used to illustrate the studied physical processes each time such illustration becomes possible and helpful.
基金Acknowledgements We acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 11075184) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. Y03RC21124).
文摘Recent progress on the application of laser-induced breakdown spectroscopy (LIBS) for metallurgical analysis particularly achieved by Chinese research community is briefly reviewed in this article. The content is mainly focused on the progress in experimental research and calibration methods toward LIBS applications for metallurgical online analysis over the past few years. Different experiment setups such as single-pulse and double-pulses LIBS schematics are introduced. Various calibration methods for different metallic samples are presented. Quantitative results reported in the literature and obtained in the analysis of various samples with different calibration methods are summarized. At the last section of this article, the difficulties of LIBS application for molten metal analysis in a furnace are discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.50806026,50636010,50721005)
文摘Soot,which is produced in fuel-rich parts of flames as a result of incomplete combustion of hydrocarbons,is the No.2 contributor to global warming after carbon dioxide.Developing soot measurement techniques is important to understand soot formation mechanism and control soot emission.The various soot measurement techniques,such as thermophoretic sampling par-ticles diagnostics followed by electron microscopy analysis,thermocouple particle densitometry,light extinction,laser-induced incandescence,two-color method,and emission computed tomography,are reviewed in this paper.The measurement principle and application cases of these measurement methods are described in detail.The development trend of soot measurement is to realize the on-line measurement of multi-dimensional distributions of temperature,soot volume fraction,soot particle size and other parameters in hydrocarbon-air flames.Soot measurement techniques suitable for both small flames in laboratories and large-scale flames in industrial combustion devices should be developed.Besides,in some special situations,such as high-pressure,zero gravity and micro-gravity flames,soot measurement also should be provided.
基金Acknowledgements The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant No. 51061130536).
文摘Three major elements, carbon, hydrogen, and nitrogen, in twenty-four bituminous coal samples, were measured by laser-induced breakdown spectroscopy. Argon and helium were applied as ambient gas to enhance the signals and eliminate the interference of nitrogen from surrounding air. The relative standard deviation of the related emission lines and the performance in the partial least squares (PLS) modeling were compared for different ambient environments. The results showed that argon not only improved the intensity, but also reduced signal fluctuation. The PLS model also had the optimal performance in multi-element analysis using argon as ambient gas. The root mean square error of prediction of carbon concentration decreased from 4.25% in air to 3.49% in argon, while the average relative error reduced from 4.96% to 2.98%. Hydrogen line demonstrated similar improvement. Yet, the nitrogen lines were too weak to be detected even in an argon environment which suggested the nitrogen signal measured in air come from the breakdown of nitrogen molecules in the atmosphere.
基金This study was supported by the Thuringian Ministry of Education,Science and Culture(OptiMi 2020-Graduate Research School‘Green Photonics’,B514-10061)the German Research Foundation(Leibniz program)the Carl Zeiss Foundation.
文摘In recent years,femtosecond(fs)-lasers have evolved into a versatile tool for high precision micromachining of transparent materials because nonlinear absorption in the focus can result in refractive index modifications or material disruptions.However,when high pulse energies or low numerical apertures are required,nonlinear side effects such as self-focusing,filamentation or white light generation can decrease the modification quality.In this paper,we apply simultaneous spatial and temporal focusing(SSTF)to overcome these limitations.The main advantage of SSTF is that the ultrashort pulse is only formed at the focal plane,thereby confining the intensity distribution strongly to the focal volume and suppressing detrimental nonlinear side effects.Thus,we investigate the optical breakdown within a water cell by pump-probe shadowgraphy,comparing conventional focusing and SSTF under equivalent focusing conditions.The plasma formation is well confined for low pulse energies,2 mJ,but higher pulse energies lead to the filamentation and break-up of the disruptions for conventional focusing,thereby decreasing the modification quality.In contrast,plasma induced by SSTF stays well confined to the focal plane,even for high pulse energies up to 8 mJ,preventing extended filaments,side branches or break-up of the disruptions.Furthermore,while conventional focusing leads to broadband supercontinuum generation,only marginal spectral broadening is observed using SSTF.These experimental findings are in excellent agreement with numerical simulations of the nonlinear pulse propagation and interaction processes.Therefore,SSTF appears to be a powerful tool to control the processing of transparent materials,e.g.,for precise ophthalmic fs-surgery.
基金This work was supported by the U.S.National Science Foundation(No.ECCS-1916068)the Army Research Office(No.W911NF-17-1-0428)the Air Force Office of Scientific Research(No.FA9550-18-1-0357).
文摘Terahertz(THz)wave generation from laser-induced air plasma generally requires a short temporal laser pulse.In contrast,it was observed that THz radiation from ionized liquid water prefers a longer pulse,wherein the mechanism remains unclear.We attribute the preference for longer pulse duration to the process of ionization and plasma formation in water,which is supported by a numerical simulation result showing that the highest electron density is achieved with a subpicosecond pulse.The explanation is further verified by the coincidence of our experimental result and simulation when the thickness of the water is varied.Other liquids are also tested to assure the preference for such a pulse is not exclusive to water.
基金The project supported by Specialized Research Fund for the Doctoral Program of Higher Education (No. 20020487013) and bythe Key Program for International Cooperation of Science and Technology of China (No. 2001 CB711203)
文摘Laser-induced breakdown spectroscopy (LIBS) has been used to detect atomic species in various enviromnents. The quantitative analysis (C, H, O, N and S) of representative coal samples are being carried out with LIBS, and the effects of particle size are analyzed. A powerful pulse Nd:YAG laser is focused on the coal sample at atmosphere pressure, and the emission spectra from laser-induced plasmas are measured by time-resolved spectroscopy, and the intensity of analyzed spectral lines is obtained through observing the laser plasma with a delay time of 0.4 #s. The experimental results show that the slope of calibration curve is nearly 1 when the concentration of the analyzed element is relatively low, and the slope of curve is nearly 0.5 when the concentration of C is higher than other elements. In addition, using the calibration-free model without self-absorption effect, the results show that the decreasing of particle size leads to an increase of the plasma temperature.
文摘Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos.
基金supported by the Development Fund of National Autonomous Demonstration Innovation Zone of Shandong Peninsula(Grant No.ZCQ17104)the National Key Research and Development Program of China(Grant No.2017YFB0305400)‘double hundred plan’ Yantai talent funding project
文摘A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors, such as laser pulse energy, repetition rate and argon flow rate, that influence laser-induced breakdown spectroscopy (LIBS) analytical performance are investigated in detail. Under the optimal experiment conditions, the relative standard deviations for C, Si, Mn, Ni, Cr and Cu are 3.3%-8.9%, 0.9%-2.8%, 1.2%-4.1%, 1.7%-3.0%, 1.1%-3.4% and 2.5%-8.5%, respectively, with the corresponding relative errors of 1.1%-7.9%, 1.0%-6.3%, 0.4%-3.9%, 1.5%-6.3%, 1.2%-4.0% and 1.2%-6.4%. Compared with the results of the traditional spark discharge optical emission spectrometry technique, the analytical performance of LIBS is just a little inferior due to the less stable laser-induced plasma and smaller amount of ablated sample by the laser. However, the precision, detection limits and accuracy of LIBS obtained in our present work were sufficient to meet the requirements for process analysis. These technical performances of higher stability of output energy and longer service life for DPSSL, in comparison to the Q-switch laser pumped by xeon lamp, qualify it well for the real time online analysis for different industrial applications.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60978014 and 11074027)the Funds from Science & Technology Department of Jilin Province (Grant Nos. 20090523, 20100521 and 20100168)+1 种基金the Fund from Science & Technology Department of Changchun City (Grant No. 09GH01)the Fund from Education Department of Jilin Province (2009 (40)) (Grant No. 9140c150302110c1501)
文摘Femtosecond laser-induced breakdown spectroscopy (fs-LIBS) is employed to analyze the element content in poplar tree leaves from four representative locations in Changchun City (Jingyue National Forest Park,JYP),Changchun University of Science and Technology (CUST),Casting Factory (CF) and Forging Factory (FF) of First Automobile Works (FAW) under identical experimental conditions.Those elements of N,P,K,Ca,Fe,Ti,Mn and Na are identified in the poplar tree leaves from the recorded spectrogram and the elemental content in the leaves is further obtained by applying free calibration method to the spectrogram.Our results show that the elements Ca and Fe in the poplar tree leaves from the CF area have the highest concentration in the four locations,which is a factor of 2.05 and 1.66 respectively to those of JYP.This experiment demon-strates that fs-LIBS can be utilized to analyze element content in a sample and find new applications in the environmental detection.
基金financially supported by the Guangdong Provincial University Science and Technology Program(Grant No.2020KTSCX119)the Shenzhen Science and Technology Programs(Grant Nos.20200925155508001,GJHZ20190820151801786,JCYJ20210324115608024 and KQTD20170810110250357)。
文摘Liquid-assisted laser ablation has the advantage of relieving thermal effects of common laser ablation processes, whereas the light scattering and shielding effects by laser-induced cavitation bubbles, suspended debris, and turbulent liquid flow generally deteriorate laser beam transmission stability, leading to low energy efficiency and poor surface quality. Here, we report that a continuous and directional high-speed microjet will form in the laser ablation zone if laser-induced primary cavitation bubbles asymmetrically collapse sequentially near the air-liquid interface under a critical thin liquid layer. The laser-induced microjet can instantaneously and directionally remove secondary bubbles and ablation debris around the laser ablation region, and thus a very stable material removal process can be obtained. The shadowgraphs of high-speed camera reveal that the average speed of laser-induced continuous microjet can be as high as 1.1 m sin its initial 500 μm displacement. The coupling effect of laser ablation, mechanical impact along with the collapse of cavitation bubbles and flushing of high-speed microjet helps achieve a high material removal rate and significantly improved surface quality. We name this uncovered liquid-assisted laser ablation process as laser-induced microjet-assisted ablation(LIMJAA) based on its unique characteristics. High-quality microgrooves with a large depth-to-width ratio of 5.2 are obtained by LIMJAA with a single-pass laser scanning process in our experiments. LIMJAA is capable of machining various types of difficult-to-process materials with high-quality arrays of micro-channels, square and circle microscale through-holes. The results and disclosed mechanisms in our work provide a deep understanding of the role of laser-induced microjet in improving the processing quality of liquid-assisted laser micromachining.
基金Acknowledgements The authors are grateful for the financial support from the National Special Fund for the Development of Major Research Equipment and Instruments (Grant No. 2011YQ160017), the National Natural Science Foundation of China (Grant Nos. 61575073, 51429501, and 61378031), the National Nature Science Foundation of Hubei Province (Grant No. 2015CFB298), and the Fundamental Research Funds for the Central Universities (HUST: 2014QNRC024 and 2015MS002).
文摘Laser-induced breakdown spectroscopy (LIBS) has attracted much attention in terms of both scientific research and industrial application. An important branch of LIBS research in Asia, the development of data processing methods for LIBS, is reviewed. First, the basic principle of LIBS and the characteristics of spectral data are briefly introduced. Next, two aspects of research on and problems with data processing methods are described: i) the basic principles of data preprocessing methods are elaborated in detail on the basis of the characteristics of spectral data; ii) the performance of data analysis methods in qualitative and quantitative analysis of LIBS is described. Finally, a direction for future development of data processing methods for LIBS is also proposed.
基金the National Natural Science Foundation of China(Nos.52073224 and 52202111)the Textile Vision Basic Research Program of China(No.J202110)+4 种基金the Key Research and Development Program of Xianyang Science and Technology Bureau,China(No.2021ZDYF-GY-0035)the Key Research and Development Program of Shaanxi Province,China(No.2022SF-470)the Key Research and Development Program of Shaanxi Province,China(No.2022GY-377)the Natural Science Foundation of Shaanxi Province(No.2021JQ-685)the Scientific Research Project of Shaanxi Provincial Education Department,China(No.22JC035).
文摘Conventional firefighting clothing and fire masks can protect firemen’s safety to a certain extent,whereas cannot perceive environmental hazards and monitor their physical status in real time.Herein,we fabricated two kinds of Janus graphene/poly(pphenylene benzobisoxazole)(PBO)fabrics by laser direct writing approach and evaluated their performance as intelligent firefighting clothes and fire masks.The results showed that the Janus graphene/PBO fabrics were virtually non-combustible and achieved the highest thermal protection time of 18.91 s ever reported in flame,which is due to the intrinsic flame-retardant nature of PBO fibers.The graphene/PBO woven fabrics-based sensor showed good repeatability and stability in human motion monitoring and NO_(2)gas detection.Furthermore,the piezoelectric fire mask was assembled with graphene/PBO nonwoven fabric as electrode layer and polyvinylidene fluoride(PVDF)electrostatic direct writing film as piezoelectric layer.The filtration efficiency of the fire mask reaches 95%for PM_(2.5)and 100%for PM_(3.0),indicating its effective filtration capability for smoke particles in fires.The respiratory resistance of the piezoelectric fire mask(46.8 Pa)was lower than that of commercial masks(49 Pa),showing that it has good wearing comfort.Besides,the piezoelectric fire mask can be sensitive to the speed and intensity of human breathing,which is essential for indirectly reflecting the health of the human body.Consequently,this work provides a facile approach to fabricate next-generation intrinsic flame-retardant smart textiles for smart firefighting.
文摘Reaction-bonded silicon carbide(RB-SiC)is an excellent engineering material with high hardness,stiffness,and resistance to chemical wear.However,its widespread use is hindered due to the properties mentioned above,making it difficult to machine functional surface structures through mechanical and chemical methods.This study investigated the fundamental characteristics of laser-induced periodic surface structures(LIPSSs)on RB-SiC via femtosecond pulsed laser irradiation at a wavelength of 1028 nm.Low-spatial-frequency LIPSS(LSFL)and high-spatial-frequency LIPSS(HSFL)formed on the surface along directions perpendicular to the laser polarization.SiC grains surrounded by a large amount of Si show a reduced threshold for LIPSS formation.By varying laser fluence and scanning speed,HSFL-LSFL hybrid structures were generated on the SiC grains.Transmission electron microscopy observations and Raman spectroscopy were carried out to understand the formation mechanism of the hybrid LIPSS.A possible mechanism based on the generation of multiple surface electromagnetic waves due to the nonlinear response of SiC was proposed to explain the hybrid structure formation.Furthermore,the direction of laser scanning with respect to laser polarization affects the uniformity of the generated LIPSS.