The laser gyro is most su it able for building the strap down inertial navigation system (SINS), and its acc uracy of attitude algorithm can enormously affect that of the laser SINS. This p aper develops three improv...The laser gyro is most su it able for building the strap down inertial navigation system (SINS), and its acc uracy of attitude algorithm can enormously affect that of the laser SINS. This p aper develops three improved algorithmal expressions for strap down attitude ut ilizing the angular increment output by the laser gyro from the last two and cur rent updating periods according to the number of gyro samples, and analyses the algorithm error in the classical coning motion. Compared with the conventional algorithms, simulational results show that this improved algorithm has higher precision. A new way to improve the rotation vector algorithms is provided.展开更多
A mode-locked thulium-doped fiber laser(TDFL) based on nonlinear polarization rotation(NPR) with different net anomalous dispersion is demonstrated. When the cavity dispersion is-1.425 ps^2, the noise-like(NL) pulse w...A mode-locked thulium-doped fiber laser(TDFL) based on nonlinear polarization rotation(NPR) with different net anomalous dispersion is demonstrated. When the cavity dispersion is-1.425 ps^2, the noise-like(NL) pulse with coherence spike width of 406 fs and pulse energy of 12.342 nJ is generated at a center wavelength of 2003.2 nm with 3 dB spectral bandwidth of 23.20 nm. In the experimental period of 400 min, the 3 dB spectral bandwidth variation, the output power fluctuation, and the central wavelength shift are less than 0.06 nm, 0.04 d B, and0.4 nm, respectively, indicating that the NPR-based TDFL operating in the NL regime holds good long-term stability.展开更多
In recent years,multi-wavelength fiber lasers play a significant role in plenty of fields,ranging from optical communications to mechanical processing and laser biomedicine,owing to their high beam quality,low cost,an...In recent years,multi-wavelength fiber lasers play a significant role in plenty of fields,ranging from optical communications to mechanical processing and laser biomedicine,owing to their high beam quality,low cost,and excellent heat dissipation properties.Benefitting from increasing maturity of optical elements,the multi-wavelength fiber laser has made rapid developments.In this review,we summarize and analyze diverse implementation methods covering continuous wave and pulsed fiber lasers at room temperature conditions:inserting an optical filter device and intensity-dependent loss structure in the resonant cavity,and applying ultrafast nonlinear optical response of materials and a dual-cavity structure.Finally,future challenges and perspectives of the multi-wavelength fiber laser are discussed and addressed.展开更多
The rotational motions of the optically trapped microscopic particles by the vortex femtosecond laser beam are investigated in this paper.Black particles can be trapped and rotated by a vortex femtosecond laser beam v...The rotational motions of the optically trapped microscopic particles by the vortex femtosecond laser beam are investigated in this paper.Black particles can be trapped and rotated by a vortex femtosecond laser beam very effectively because the vortex beam carries orbital angular momentum due to the helical wave-front structure in assoication with the central phase singularity.Trapped black particles rotate in the vortex beam due to the absorption of the angular momentum transferred from the vortex beam.The rotating directions of the trapped particles can be modulated by reversing the topological charge of the optical vortex in the vortex femtosecond beam.And the rotating speeds of the trapped microscopic particles greatly depend on the topological charges of the vortex tweezer and the used pulse energies.展开更多
A novel hybrid surface micromachined segmented mirror array is described. This device is capable of scaling to large apertures for correcting time-varying aberrations in laser applications. Each mirror is composed of ...A novel hybrid surface micromachined segmented mirror array is described. This device is capable of scaling to large apertures for correcting time-varying aberrations in laser applications. Each mirror is composed of bottom electrode, support part, and mirror plate, in which a T-shaped beam structure is used to support the mirror plate. It can provide mirror with vertical movement and rotation around two horizontal axes. The test results show that the maximum deflection along the vertical direction of the mirror plate is 2 μm, while the rotation angles around x and y axes are±2.3° and ±1.45°, respectively.展开更多
Molecular alignment and orientation by laser fields has attracted significant attention in recent years,mostly due to new capabilities to manipulate the molecular spatial arrangement.Molecules can now be efficiently p...Molecular alignment and orientation by laser fields has attracted significant attention in recent years,mostly due to new capabilities to manipulate the molecular spatial arrangement.Molecules can now be efficiently prepared for ionization,structural imaging,orbital tomography,and more,enabling,for example,shooting of dynamic molecular movies.Furthermore,molecular alignment and orientation processes give rise to fundamental quantum and classical phenomena like quantum revivals,Anderson localization,and rotational echoes,just to mention a few.We review recent progress on the visualization,coherent control,and applications of the rich dynamics of molecular rotational wave packets driven by laser pulses of various intensities,durations,and polarizations.In particular,we focus on the molecular unidirectional rotation and its visualization,the orientation of chiral molecules,and the three-dimensional orientation of asymmetric-top molecules.Rotational echoes are discussed as an example of nontrivial dynamics and detection of prepared molecular states.展开更多
文摘The laser gyro is most su it able for building the strap down inertial navigation system (SINS), and its acc uracy of attitude algorithm can enormously affect that of the laser SINS. This p aper develops three improved algorithmal expressions for strap down attitude ut ilizing the angular increment output by the laser gyro from the last two and cur rent updating periods according to the number of gyro samples, and analyses the algorithm error in the classical coning motion. Compared with the conventional algorithms, simulational results show that this improved algorithm has higher precision. A new way to improve the rotation vector algorithms is provided.
基金Fundamental Research Funds for the Central Universities(2016YJS034)
文摘A mode-locked thulium-doped fiber laser(TDFL) based on nonlinear polarization rotation(NPR) with different net anomalous dispersion is demonstrated. When the cavity dispersion is-1.425 ps^2, the noise-like(NL) pulse with coherence spike width of 406 fs and pulse energy of 12.342 nJ is generated at a center wavelength of 2003.2 nm with 3 dB spectral bandwidth of 23.20 nm. In the experimental period of 400 min, the 3 dB spectral bandwidth variation, the output power fluctuation, and the central wavelength shift are less than 0.06 nm, 0.04 d B, and0.4 nm, respectively, indicating that the NPR-based TDFL operating in the NL regime holds good long-term stability.
基金partially supported by the Science and Technology Development Fund,Macao Special Administration Region(SAR)(Nos.007/2017/A1 and 132/2017/A3)National Natural Science Foundation of China(NSFC)(Nos.61875138,61435010,61775142,and 6181101252)+1 种基金Science and Technology Innovation Commission of Shenzhen(Nos.KQTD2015032416270385,JCYJ20150625103619275,and JCYJ20170811093453105)Shenzhen Basic Research Project on Subject Layout(No.JCYJ20170412105812811)。
文摘In recent years,multi-wavelength fiber lasers play a significant role in plenty of fields,ranging from optical communications to mechanical processing and laser biomedicine,owing to their high beam quality,low cost,and excellent heat dissipation properties.Benefitting from increasing maturity of optical elements,the multi-wavelength fiber laser has made rapid developments.In this review,we summarize and analyze diverse implementation methods covering continuous wave and pulsed fiber lasers at room temperature conditions:inserting an optical filter device and intensity-dependent loss structure in the resonant cavity,and applying ultrafast nonlinear optical response of materials and a dual-cavity structure.Finally,future challenges and perspectives of the multi-wavelength fiber laser are discussed and addressed.
基金Project supported by the National Natural Science Foundation for Post-Doctoral Scientists of China (Grant No. 2012M511002)the National Natural Science Foundation of China (Grant Nos. 10904027 and 61108018)the Science and Technology Programs of Heilongjiang Educational Committee,China (Grant No. 12511425)
文摘The rotational motions of the optically trapped microscopic particles by the vortex femtosecond laser beam are investigated in this paper.Black particles can be trapped and rotated by a vortex femtosecond laser beam very effectively because the vortex beam carries orbital angular momentum due to the helical wave-front structure in assoication with the central phase singularity.Trapped black particles rotate in the vortex beam due to the absorption of the angular momentum transferred from the vortex beam.The rotating directions of the trapped particles can be modulated by reversing the topological charge of the optical vortex in the vortex femtosecond beam.And the rotating speeds of the trapped microscopic particles greatly depend on the topological charges of the vortex tweezer and the used pulse energies.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 10476010.
文摘A novel hybrid surface micromachined segmented mirror array is described. This device is capable of scaling to large apertures for correcting time-varying aberrations in laser applications. Each mirror is composed of bottom electrode, support part, and mirror plate, in which a T-shaped beam structure is used to support the mirror plate. It can provide mirror with vertical movement and rotation around two horizontal axes. The test results show that the maximum deflection along the vertical direction of the mirror plate is 2 μm, while the rotation angles around x and y axes are±2.3° and ±1.45°, respectively.
基金supported by the National Key R&D Program of China(Grant No.2018YFA0306303)the National Natural Science Foundation of China(Grants Nos.11834004,61690224,and 11761141004)+6 种基金the 111 Project of China(Grant No.B12024)the Projects from Shanghai Science and Technology Commission(No.19JC1412200)ISF-NSFC joint research program(Grant No.2520/17),CNRSthe ERDF Operational Program-Burgundythe EIPHI Graduate School(Contract No.ANR-17-EURE-0002)the Associate(CNRS&Weizmann)International ImagiNano LaboratoryIsrael Science Foundation(Grant No.746/15).
文摘Molecular alignment and orientation by laser fields has attracted significant attention in recent years,mostly due to new capabilities to manipulate the molecular spatial arrangement.Molecules can now be efficiently prepared for ionization,structural imaging,orbital tomography,and more,enabling,for example,shooting of dynamic molecular movies.Furthermore,molecular alignment and orientation processes give rise to fundamental quantum and classical phenomena like quantum revivals,Anderson localization,and rotational echoes,just to mention a few.We review recent progress on the visualization,coherent control,and applications of the rich dynamics of molecular rotational wave packets driven by laser pulses of various intensities,durations,and polarizations.In particular,we focus on the molecular unidirectional rotation and its visualization,the orientation of chiral molecules,and the three-dimensional orientation of asymmetric-top molecules.Rotational echoes are discussed as an example of nontrivial dynamics and detection of prepared molecular states.