Early selection is an important method to shorten the breeding cycle for tree species, which may differ in the time for early selection. To evaluate the early selected time for Larix kaempferi, tree height and diamete...Early selection is an important method to shorten the breeding cycle for tree species, which may differ in the time for early selection. To evaluate the early selected time for Larix kaempferi, tree height and diameter at breast height of 57 L. kaempferi clones were measured over many different growth years. The results indicated that, except for age × clone interaction for diameter at breast height (P = 0.741), there were significant differences among all variation sources (P 〈 0.01). The coefficient of phenotypic variation ranged from 14.89 to 35.65% for height and from 19.17 to 23.86% for diameter at breast height in different growth years. The repeatability of height and of diameter at breast height among clones was high, ranging from 0.6181 to 0.8531 (height) and from 0.8443 to 0.8497 (diameter at breast height), in different growth years. There were significant positive correlations between all pairs of growth traits except between height in the 2nd growth year and height in the 30th growth year; and between height in the 2nd growth year × diameter at breast height in the 30th growth year. With a comprehen- sive evaluation method and a selection ratio of 10%, L65, L1, L62, L9, L15, and L78 were selected as excellent clones in the 30th growth year. Their average values of height and diameter at breast height were 9.81 and 16.57% higher than the overall average, representing genetic gains of 6.46 and 13.99%, respectively. This study provides a theoretical foundation for the genetic improvement of L. kaempferi.展开更多
Segmented taper equation was selected to model stem profile of Dahurian larch (Larix gmelinii Rupr.). The data were based on stem analysis of 74 trees from Dailing Forest Bureau in Heilongjiang Province, Northeaster...Segmented taper equation was selected to model stem profile of Dahurian larch (Larix gmelinii Rupr.). The data were based on stem analysis of 74 trees from Dailing Forest Bureau in Heilongjiang Province, Northeastern China. Two taper equations with crown ratio and stand basal area were derived from the Max and Burkhart’s (1976) taper equation. Three taper equations were evaluated: (1) the original equation, (2) the original equation with crown ratio, and (3) the original equation with basal area. SAS NLIN and SYSNLIN procedures were used to fit taper equations. Fit statistics and cross-validation were used to evaluate the accuracy and precision of these models. Parameter estimates showed that the original equation with inclusion of crown ratio and basal area variables provided significantly different parameter estimates with lower standard errors. Overall fit statistics indicated that the root mean square error (RMSE) for diameter outside and inside bark decreased respectively by 10% and 7% in the original model with crown ratio and by 12% and 7.2% in the original model with basal area. Cross-validation further confirmed that the original equation with inclusion of crown ratio and basal area variables provided more accurate predictions at the lower section (relative heights, 10%) and upper section (relative heights, 50%) for both outside and inside bark diameters.展开更多
Stem respiration is an important part of the activity of a tree and is an important source of CO2 evolution from a forest ecosystem. Presently, no standard methods are available for the accurate estimation of total st...Stem respiration is an important part of the activity of a tree and is an important source of CO2 evolution from a forest ecosystem. Presently, no standard methods are available for the accurate estimation of total stem CO2 efflux from a forest. In the current study, a 33-year-old (by the year 2001) larch (Larix gmelini Rupr.) plantation was measured throughout 2001-2002 to analyze its monthly and seasonal patterns of stem respiration. Stem respiration rate was also measured at different heights, at different daily intervals and any variation in the larch plantation was recorded. The relationship between stem temperature, growth status and respiration rate was analyzed. Higher respiration rates were recorded in upper reaches of the larch tree throughout the season and these were affected partially by temperature difference. Midday depression was found in the diurnal changes in stem respiration. In the morning, but not in the afternoon, stem respiration was positively correlated with stem temperature. The reason for this variation may be attributed to water deficit, which was stronger in the afternoon. In the larch plantation, a maximum 7-fold variation in stem respiration was found. The growth status (such as mean growth rate of stem and canopy projection area) instead of stem temperature difference was positively correlated with this large variation. An S-model (sigmoid curve) or Power model shows the greatest regression of the field data. In the courses of seasonal and annual changes of stem respiration, peak values were observed in July of both years, but substantial interannual differences in magnitude were observed. An exponential model can clearly show this regression of the temperature-respiration relationship. In our results, Q(10) values ranged from 2.22 in 2001 to 3.53 in 2002. Therefore, estimation of total stem CO2 efflux only by a constant Q(10) value may give biased results. More parameters of growth status and water status should be considered for more accurate estimation.展开更多
This study was conducted in a fire-prone region in the Greater Xing'an Mountains, the primary forested area of northeastern China. We measured soil respiration and the affecting soil factors, i.e., soil microbial bio...This study was conducted in a fire-prone region in the Greater Xing'an Mountains, the primary forested area of northeastern China. We measured soil respiration and the affecting soil factors, i.e., soil microbial biomass and soil moisture, within an experimental plot of Larix gmelinii Rupr. A low-intensity, prescribed fire was applied as the treatment. Traditional descriptive statistics and geostatistics were used to analyze the spatial heterogeneity of soil respiration and the response of respiration to fire disturbance. Coefficients of variation (CVs) for pre-fire and post-fire soil respiration were 23.4 and 32.0 %, respec- tively. CVs for post-fire soil respiration increased signifi- cantly, with a moderate variation of all CVs. Soil respiration pre-fire was significantly correlated with soil microbial biomass carbon, biomass nitrogen, and soil moisture (W); post-fire soil respiration was not correlated with these factors. From the geostatistical analyses, the Co + C (sill) for post-fire soil respiration increased sig- nificantly, indicating that the post-fire spatial heterogeneity of soil respiration increased significantly. The nugget effect (nc) of soil respiration and the affecting factors pre-fire and post-fire disturbance were in the range of 12.5-50 %, with strong spatial autocorrelation. Fire disturbance changed the components of spatial heterogeneity, and the proportion of functional heterogeneity increased significantly post-fire. The ranges (a) for pre-fire and post-fire soil respiration were 81.0 and 68.2 m, respectively. The homogeneity of the distribution of post-fire soil respiration decreased and the spatial heterogeneity increased, thus the range for post- fire soil respiration decreased significantly. The fractal dimension (D) for soil respiration increased post-fire, the spatial heterogeneity of soil respiration affected by random components increased, indicating that the change in spatial heterogeneity of post-fire soil respiration should be con- sidered within t展开更多
Aims Nitrogen(N)addition could affect the rate of forest litter and soil organic matter decomposition by regulating extracellular enzyme activity(EEa).The impact of N addition on EEa may differ across different age st...Aims Nitrogen(N)addition could affect the rate of forest litter and soil organic matter decomposition by regulating extracellular enzyme activity(EEa).The impact of N addition on EEa may differ across different age stands with different organic matter quality.We were interested in whether the impact of N addition on EEa in litter and mineral soil during the growing season was dependent on stand age of a larch plantation in North China.Methods We added three levels of N(0,20 and 50 kg N ha^(−1) year^(−1))in three age stands(11,20 and 45 years old)of Larix principis-rupprech-tii plantation in North China.We measured potential activities of β-1,4-glucosidase(b),cellobiohydrolase(Cb),β-1,4-N-acetyl-glucosaminidase(Nag)and phenol oxidase(Po)in litter(organic horizon)and mineral soil(0-10 cm)during the second growing sea-son after N amendment.We also measured C and N concentrations,microbial biomass C and N,and KCl-extractable ammonium and nitrate in both litter and mineral soil.Important Findings We observed unimodal patterns of EEa during the growing season in all three stands,consistent with the seasonal variations of soil temperature.stand age had a strong effect on EEa in both litter and mineral soil,and this effect differed between litter and mineral soil as well as between different enzymes.N addition did not significantly affect the activities of b or Cb but significantly suppressed the activity of Nag in litter.We also found stand age-specific responses of Po activity to N addition in both litter and mineral soil.N addition suppressed Po activity of the high C:N ratio litters in 20-and 45-year-old stands but had no significant effect on Po activity of the low C:N ratio litter in 11-year-old stand.moreover,N addition inhibited Po activity of the high C:N ratio soil in 20-year-old stand but had no significant impact on Po activity of the low C:N ratio soils in 11-and 45-year-old stands.overall,stand age had a greater effect on EEa in litter and mineral soil compared to 2 years of N addition.moreover,the ef展开更多
Aims Conversion of secondary forests to pure larch plantations is a common management practice driven by the increasing demand for timber production in Northeast China,resulting in a reduction in soil nutrient availab...Aims Conversion of secondary forests to pure larch plantations is a common management practice driven by the increasing demand for timber production in Northeast China,resulting in a reduction in soil nutrient availability after a certain number of years following conversion.Nutrient resorption prior to leaf senescence was related to soil fertility,an important nutrient conservation strategy for plants,being especially significant in nutrient-poor habitats.However,the seasonal dynamics of leaf nutrients and nutrient resorption in response to secondary forest conversion to larch plantations is not well understood.Methods A comparative experiment between larch plantations(Larix spp.)and adjacent secondary forests(dominant tree species including Quercus mongolica,Acer mono,Juglans mandshurica and Fraxinus rhynchophylla)was conducted.We examined the variations in leaf nutrient(macronutrients:N,P,K,Ca and Mg;micronutrients:Cu and Zn)concentrations of these tree species during the growing season from May to October in 2013.Nutrient resorption efficiency and proficiency were compared between Larix spp.and the broadleaved species in the secondary forests.Important Findings Results show that the seasonal variation of nutrient concentrations in leaves generally exhibited two trends,one was a downward trend for N,P,K,Cu and Zn,and another was an upward trend for Ca and Mg.The variations in foliar nutrient concentrations were mainly controlled by the developmental stage of leaves rather than by tree species.Resorption of the observed seven elements varied among the five tree species during leaf senescence.Nutrient resorption efficiency varied 6–75%of N,P,K,Mg,Cu and Zn,while Ca was not retranslocated in the senescing leaves of all species,and Mg was not retranslocated in Larix spp.Generally,Larix spp.tended to be more efficient and proficient(higher than 6–30%and 2–271%of nutrient resorption efficiency and resorption proficiency,respectively)in resorbing nutrients than the broadleaved species in the secondary forests,i展开更多
基金supported by the Innovation Project of State Key Laboratory of Tree Genetics and Breeding(Northeast Forestry University)(No.2016C02)China Postdoctoral Science Foundation(2014M561315)
文摘Early selection is an important method to shorten the breeding cycle for tree species, which may differ in the time for early selection. To evaluate the early selected time for Larix kaempferi, tree height and diameter at breast height of 57 L. kaempferi clones were measured over many different growth years. The results indicated that, except for age × clone interaction for diameter at breast height (P = 0.741), there were significant differences among all variation sources (P 〈 0.01). The coefficient of phenotypic variation ranged from 14.89 to 35.65% for height and from 19.17 to 23.86% for diameter at breast height in different growth years. The repeatability of height and of diameter at breast height among clones was high, ranging from 0.6181 to 0.8531 (height) and from 0.8443 to 0.8497 (diameter at breast height), in different growth years. There were significant positive correlations between all pairs of growth traits except between height in the 2nd growth year and height in the 30th growth year; and between height in the 2nd growth year × diameter at breast height in the 30th growth year. With a comprehen- sive evaluation method and a selection ratio of 10%, L65, L1, L62, L9, L15, and L78 were selected as excellent clones in the 30th growth year. Their average values of height and diameter at breast height were 9.81 and 16.57% higher than the overall average, representing genetic gains of 6.46 and 13.99%, respectively. This study provides a theoretical foundation for the genetic improvement of L. kaempferi.
基金This study was supported by the National Natural Science Foundation of China(30972363)Special Fund for For-estry-Scientific Research in the Public Interest(201004026)+2 种基金China Postdoctoral Science Foundation(200902362,20100471014)the Fun-damental Research Funds for the Central Universities(DL10CA06)SRF for ROCS,SEM.
文摘Segmented taper equation was selected to model stem profile of Dahurian larch (Larix gmelinii Rupr.). The data were based on stem analysis of 74 trees from Dailing Forest Bureau in Heilongjiang Province, Northeastern China. Two taper equations with crown ratio and stand basal area were derived from the Max and Burkhart’s (1976) taper equation. Three taper equations were evaluated: (1) the original equation, (2) the original equation with crown ratio, and (3) the original equation with basal area. SAS NLIN and SYSNLIN procedures were used to fit taper equations. Fit statistics and cross-validation were used to evaluate the accuracy and precision of these models. Parameter estimates showed that the original equation with inclusion of crown ratio and basal area variables provided significantly different parameter estimates with lower standard errors. Overall fit statistics indicated that the root mean square error (RMSE) for diameter outside and inside bark decreased respectively by 10% and 7% in the original model with crown ratio and by 12% and 7.2% in the original model with basal area. Cross-validation further confirmed that the original equation with inclusion of crown ratio and basal area variables provided more accurate predictions at the lower section (relative heights, 10%) and upper section (relative heights, 50%) for both outside and inside bark diameters.
文摘Stem respiration is an important part of the activity of a tree and is an important source of CO2 evolution from a forest ecosystem. Presently, no standard methods are available for the accurate estimation of total stem CO2 efflux from a forest. In the current study, a 33-year-old (by the year 2001) larch (Larix gmelini Rupr.) plantation was measured throughout 2001-2002 to analyze its monthly and seasonal patterns of stem respiration. Stem respiration rate was also measured at different heights, at different daily intervals and any variation in the larch plantation was recorded. The relationship between stem temperature, growth status and respiration rate was analyzed. Higher respiration rates were recorded in upper reaches of the larch tree throughout the season and these were affected partially by temperature difference. Midday depression was found in the diurnal changes in stem respiration. In the morning, but not in the afternoon, stem respiration was positively correlated with stem temperature. The reason for this variation may be attributed to water deficit, which was stronger in the afternoon. In the larch plantation, a maximum 7-fold variation in stem respiration was found. The growth status (such as mean growth rate of stem and canopy projection area) instead of stem temperature difference was positively correlated with this large variation. An S-model (sigmoid curve) or Power model shows the greatest regression of the field data. In the courses of seasonal and annual changes of stem respiration, peak values were observed in July of both years, but substantial interannual differences in magnitude were observed. An exponential model can clearly show this regression of the temperature-respiration relationship. In our results, Q(10) values ranged from 2.22 in 2001 to 3.53 in 2002. Therefore, estimation of total stem CO2 efflux only by a constant Q(10) value may give biased results. More parameters of growth status and water status should be considered for more accurate estimation.
基金supported by National Natural Science Foundation(Nos.31470657 and 31070544)Fundamental Research Funds for the Central Universities(No.2572015DA01)The CFERN and GENE Award Funds for Ecological Papers
文摘This study was conducted in a fire-prone region in the Greater Xing'an Mountains, the primary forested area of northeastern China. We measured soil respiration and the affecting soil factors, i.e., soil microbial biomass and soil moisture, within an experimental plot of Larix gmelinii Rupr. A low-intensity, prescribed fire was applied as the treatment. Traditional descriptive statistics and geostatistics were used to analyze the spatial heterogeneity of soil respiration and the response of respiration to fire disturbance. Coefficients of variation (CVs) for pre-fire and post-fire soil respiration were 23.4 and 32.0 %, respec- tively. CVs for post-fire soil respiration increased signifi- cantly, with a moderate variation of all CVs. Soil respiration pre-fire was significantly correlated with soil microbial biomass carbon, biomass nitrogen, and soil moisture (W); post-fire soil respiration was not correlated with these factors. From the geostatistical analyses, the Co + C (sill) for post-fire soil respiration increased sig- nificantly, indicating that the post-fire spatial heterogeneity of soil respiration increased significantly. The nugget effect (nc) of soil respiration and the affecting factors pre-fire and post-fire disturbance were in the range of 12.5-50 %, with strong spatial autocorrelation. Fire disturbance changed the components of spatial heterogeneity, and the proportion of functional heterogeneity increased significantly post-fire. The ranges (a) for pre-fire and post-fire soil respiration were 81.0 and 68.2 m, respectively. The homogeneity of the distribution of post-fire soil respiration decreased and the spatial heterogeneity increased, thus the range for post- fire soil respiration decreased significantly. The fractal dimension (D) for soil respiration increased post-fire, the spatial heterogeneity of soil respiration affected by random components increased, indicating that the change in spatial heterogeneity of post-fire soil respiration should be con- sidered within t
基金National Natural Science Foundation of China(#41171202,41125004).
文摘Aims Nitrogen(N)addition could affect the rate of forest litter and soil organic matter decomposition by regulating extracellular enzyme activity(EEa).The impact of N addition on EEa may differ across different age stands with different organic matter quality.We were interested in whether the impact of N addition on EEa in litter and mineral soil during the growing season was dependent on stand age of a larch plantation in North China.Methods We added three levels of N(0,20 and 50 kg N ha^(−1) year^(−1))in three age stands(11,20 and 45 years old)of Larix principis-rupprech-tii plantation in North China.We measured potential activities of β-1,4-glucosidase(b),cellobiohydrolase(Cb),β-1,4-N-acetyl-glucosaminidase(Nag)and phenol oxidase(Po)in litter(organic horizon)and mineral soil(0-10 cm)during the second growing sea-son after N amendment.We also measured C and N concentrations,microbial biomass C and N,and KCl-extractable ammonium and nitrate in both litter and mineral soil.Important Findings We observed unimodal patterns of EEa during the growing season in all three stands,consistent with the seasonal variations of soil temperature.stand age had a strong effect on EEa in both litter and mineral soil,and this effect differed between litter and mineral soil as well as between different enzymes.N addition did not significantly affect the activities of b or Cb but significantly suppressed the activity of Nag in litter.We also found stand age-specific responses of Po activity to N addition in both litter and mineral soil.N addition suppressed Po activity of the high C:N ratio litters in 20-and 45-year-old stands but had no significant effect on Po activity of the low C:N ratio litter in 11-year-old stand.moreover,N addition inhibited Po activity of the high C:N ratio soil in 20-year-old stand but had no significant impact on Po activity of the low C:N ratio soils in 11-and 45-year-old stands.overall,stand age had a greater effect on EEa in litter and mineral soil compared to 2 years of N addition.moreover,the ef
基金National Basic Research Program of China(973 Program)(2012CB416906)State Key Laboratory of Forest and Soil Ecology(LFSE2013-11).
文摘Aims Conversion of secondary forests to pure larch plantations is a common management practice driven by the increasing demand for timber production in Northeast China,resulting in a reduction in soil nutrient availability after a certain number of years following conversion.Nutrient resorption prior to leaf senescence was related to soil fertility,an important nutrient conservation strategy for plants,being especially significant in nutrient-poor habitats.However,the seasonal dynamics of leaf nutrients and nutrient resorption in response to secondary forest conversion to larch plantations is not well understood.Methods A comparative experiment between larch plantations(Larix spp.)and adjacent secondary forests(dominant tree species including Quercus mongolica,Acer mono,Juglans mandshurica and Fraxinus rhynchophylla)was conducted.We examined the variations in leaf nutrient(macronutrients:N,P,K,Ca and Mg;micronutrients:Cu and Zn)concentrations of these tree species during the growing season from May to October in 2013.Nutrient resorption efficiency and proficiency were compared between Larix spp.and the broadleaved species in the secondary forests.Important Findings Results show that the seasonal variation of nutrient concentrations in leaves generally exhibited two trends,one was a downward trend for N,P,K,Cu and Zn,and another was an upward trend for Ca and Mg.The variations in foliar nutrient concentrations were mainly controlled by the developmental stage of leaves rather than by tree species.Resorption of the observed seven elements varied among the five tree species during leaf senescence.Nutrient resorption efficiency varied 6–75%of N,P,K,Mg,Cu and Zn,while Ca was not retranslocated in the senescing leaves of all species,and Mg was not retranslocated in Larix spp.Generally,Larix spp.tended to be more efficient and proficient(higher than 6–30%and 2–271%of nutrient resorption efficiency and resorption proficiency,respectively)in resorbing nutrients than the broadleaved species in the secondary forests,i