Different from conventional cellular networks, a maritime communication base station(BS) has to cover a much wider area due to the limitation of available BS sites. Accordingly the performance of users far away from t...Different from conventional cellular networks, a maritime communication base station(BS) has to cover a much wider area due to the limitation of available BS sites. Accordingly the performance of users far away from the BS is poor in general. This renders the fairness among users a challenging issue for maritime communications. In this paper, we consider a practical massive MIMO maritime BS with hybrid digital and analog precoding. Only the large-scale channel state information at the transmitter(CSIT) is considered so as to reduce the implementation complexity and overhead of the system. On this basis, we address the problem of fairness-oriented precoding design. A max-min optimization problem is formulated and solved in an iterative way. Simulation results demonstrate that the proposed scheme performs much better than conventional hybrid precoding algorithms in terms of minimum achievable rate of all the users, for the typical three-ray maritime channel model.展开更多
Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell ra...Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell radii and complicated network architectures. A coverage extension scheme using large-scale antenna arrays(LSAAs) has been suggested and theoretically proven to be cost-efficient in combination with ultradense small cell networks. To analyze and optimize the LSAA-based network deployments, a comprehensive survey of recent advances in statistical mmWave channel modeling is first presented in terms of channel parameter estimation, large-scale path loss models, and small-scale cluster models. Next, the measurement and modeling results at two 5G candidate mmWave bands(e.g., 28 GHz and 39 GHz) are reviewed and compared in several outdoor scenarios of interest, where the propagation characteristics make crucial contributions to wireless network designs. Finally, the coverage behaviors of systems employing a large number of antenna arrays are discussed, as well as some implications on future mmWave cellular network designs.展开更多
The lack of communication infrastructure in the ocean inevitably leads to coverage blind zones.In addition to high-throughput marine satellites,unmanned aerial vehicles(UAVs)can be used to provide coverage for these b...The lack of communication infrastructure in the ocean inevitably leads to coverage blind zones.In addition to high-throughput marine satellites,unmanned aerial vehicles(UAVs)can be used to provide coverage for these blind zones along with onshore base stations.In this paper,we consider the use of UAV for maritime coverage enhancement.Particularly,to serve more ships on the vast oceanic area with limited spectrum resources,we employ non-orthogonal multiple access(NOMA).A joint power and transmission duration allocation problem is formulated to maximize the minimum ship throughput,with the constraints on onboard communication energy.Different from previous works,we only assume the slowly time-varying large-scale channel state information(CSI)to reduce the system cost,as the large-scale CSI is locationdependent and can be obtained according to a priori radio map.To solve the non-convex problem,we decompose it into two subproblems and solve them in an iterative way.Simulation results show the effectiveness of the proposed solution.展开更多
Seismic tomography reveals an “R-shape” regional flow constrained between the depths of 50 to 80 km in the Southeastern Tibetan Plateau (STP) which demonstrates some of the differences revealed by the magnetotelluri...Seismic tomography reveals an “R-shape” regional flow constrained between the depths of 50 to 80 km in the Southeastern Tibetan Plateau (STP) which demonstrates some of the differences revealed by the magnetotelluric (MT) soundings in some areas. The “R-shape” flow could be present in both the lower crust and uppermost mantle, but not in the lower crust above the Moho discontinuity. Lateral flow has been imaged under the Qiangtang and Songpan-Ganzi blocks while two channel flows have been revealed beneath the south part of the STP with the eastward lateral flow from the Qiangtang block separating into two channel flows. One branch turns southwards at the south Qiangtang block, along the Bangong-Nujiang fault reaching to the Indochina block, and another is across the Songpan-Ganzi block (fold system) which then separates into northward and southward parts. The northward branch is along the edge of the north Sichuan basin reaching to the Qingling fault and the southward channel turns south along the Anninghe fault, then turns eastward along the margins of the south Sichuan basin. Our study suggests that the crustal deformation along the deep, large sutures (such as the Longmen Shan fault zone) is maintained by dynamic pressure from the regional flow intermingled with the hot upwelling asthenosphere. The material in the lower crust and uppermost mantle flowing outward from the center of the plateau is buttressed by the old, strong lithosphere that underlies the Sichuan basin, pushing up on the crust above and maintaining steep topography through dynamic pressure. We therefore consider that the “R-shape” regional flow played a key role in the crustal deformation along the deep suture zones of the Bangong-Nujiang, the Longmen-Shan faults, and other local heavily faulted zones.展开更多
基金supported in part by the National Science Foundation of China under grant No. 91638205,grant No. 61771286, and grant No. 61701457, and grant No. 61621091
文摘Different from conventional cellular networks, a maritime communication base station(BS) has to cover a much wider area due to the limitation of available BS sites. Accordingly the performance of users far away from the BS is poor in general. This renders the fairness among users a challenging issue for maritime communications. In this paper, we consider a practical massive MIMO maritime BS with hybrid digital and analog precoding. Only the large-scale channel state information at the transmitter(CSIT) is considered so as to reduce the implementation complexity and overhead of the system. On this basis, we address the problem of fairness-oriented precoding design. A max-min optimization problem is formulated and solved in an iterative way. Simulation results demonstrate that the proposed scheme performs much better than conventional hybrid precoding algorithms in terms of minimum achievable rate of all the users, for the typical three-ray maritime channel model.
基金supported in part by the National Natural Science Foundation of China under Grant No.61671145the Key R&D Program of Jiangsu Province of China under Grant BE2018121
文摘Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell radii and complicated network architectures. A coverage extension scheme using large-scale antenna arrays(LSAAs) has been suggested and theoretically proven to be cost-efficient in combination with ultradense small cell networks. To analyze and optimize the LSAA-based network deployments, a comprehensive survey of recent advances in statistical mmWave channel modeling is first presented in terms of channel parameter estimation, large-scale path loss models, and small-scale cluster models. Next, the measurement and modeling results at two 5G candidate mmWave bands(e.g., 28 GHz and 39 GHz) are reviewed and compared in several outdoor scenarios of interest, where the propagation characteristics make crucial contributions to wireless network designs. Finally, the coverage behaviors of systems employing a large number of antenna arrays are discussed, as well as some implications on future mmWave cellular network designs.
基金supported in part by National Natural Science Foundation of China(No.61922049,61771286,61941104)the National Key R&D Program of China(2020YFA0711301)+2 种基金the Beijing National Research Center for Information Science and Technology project(BNR2020RC01016)the Nantong Technology Program(JC2019115)the Beijing Innovation Center for Future Chip。
文摘The lack of communication infrastructure in the ocean inevitably leads to coverage blind zones.In addition to high-throughput marine satellites,unmanned aerial vehicles(UAVs)can be used to provide coverage for these blind zones along with onshore base stations.In this paper,we consider the use of UAV for maritime coverage enhancement.Particularly,to serve more ships on the vast oceanic area with limited spectrum resources,we employ non-orthogonal multiple access(NOMA).A joint power and transmission duration allocation problem is formulated to maximize the minimum ship throughput,with the constraints on onboard communication energy.Different from previous works,we only assume the slowly time-varying large-scale channel state information(CSI)to reduce the system cost,as the large-scale CSI is locationdependent and can be obtained according to a priori radio map.To solve the non-convex problem,we decompose it into two subproblems and solve them in an iterative way.Simulation results show the effectiveness of the proposed solution.
文摘Seismic tomography reveals an “R-shape” regional flow constrained between the depths of 50 to 80 km in the Southeastern Tibetan Plateau (STP) which demonstrates some of the differences revealed by the magnetotelluric (MT) soundings in some areas. The “R-shape” flow could be present in both the lower crust and uppermost mantle, but not in the lower crust above the Moho discontinuity. Lateral flow has been imaged under the Qiangtang and Songpan-Ganzi blocks while two channel flows have been revealed beneath the south part of the STP with the eastward lateral flow from the Qiangtang block separating into two channel flows. One branch turns southwards at the south Qiangtang block, along the Bangong-Nujiang fault reaching to the Indochina block, and another is across the Songpan-Ganzi block (fold system) which then separates into northward and southward parts. The northward branch is along the edge of the north Sichuan basin reaching to the Qingling fault and the southward channel turns south along the Anninghe fault, then turns eastward along the margins of the south Sichuan basin. Our study suggests that the crustal deformation along the deep, large sutures (such as the Longmen Shan fault zone) is maintained by dynamic pressure from the regional flow intermingled with the hot upwelling asthenosphere. The material in the lower crust and uppermost mantle flowing outward from the center of the plateau is buttressed by the old, strong lithosphere that underlies the Sichuan basin, pushing up on the crust above and maintaining steep topography through dynamic pressure. We therefore consider that the “R-shape” regional flow played a key role in the crustal deformation along the deep suture zones of the Bangong-Nujiang, the Longmen-Shan faults, and other local heavily faulted zones.