Three mechanisms for an alternative to the Doppler effect as an explanation for the redshift are reviewed. A fourth mechanism is the attenuation of the light as given by the Beer-Lambert law. The average value of the ...Three mechanisms for an alternative to the Doppler effect as an explanation for the redshift are reviewed. A fourth mechanism is the attenuation of the light as given by the Beer-Lambert law. The average value of the Hubble constant is therefore derived by processing the galaxies of the NED-D catalog in which the distances are independent of the redshift. The observed anisotropy of the Hubble constant is reproduced by adopting a rim model, a chord model, and both 2D and 3D Voronoi diagrams.展开更多
We demonstrate that certain astrophysical distributions can be modelled with the truncated Weibull distribution, which can lead to some insights: in particular, we report the average value, the <em>r</em>t...We demonstrate that certain astrophysical distributions can be modelled with the truncated Weibull distribution, which can lead to some insights: in particular, we report the average value, the <em>r</em>th moment, the variance, the median, the mode, the generation of random numbers, and the evaluation of the two parameters with maximum likelihood estimators. The first application of the Weibull distribution is the initial mass function for stars. The magnitude version of the Weibull distribution is applied to the luminosity function for the Sloan Digital Sky Survey (SDSS) galaxies and to the photometric maximum of the 2MASS Redshift Survey (2MRS) galaxies. The truncated Weibull luminosity function allows us to model the average value of the absolute magnitude as a function of the redshift for the 2MRS galaxies.展开更多
We test the possible dipole anisotropy of the Finslerian cosmological model and the other three dipolemodulated cosmological models,i.e.the dipole-modulated ACDM,wCDM and Chevallier-Polarski-Linder(CPL)models,by using...We test the possible dipole anisotropy of the Finslerian cosmological model and the other three dipolemodulated cosmological models,i.e.the dipole-modulated ACDM,wCDM and Chevallier-Polarski-Linder(CPL)models,by using the recently released Pantheon sample of SNe la.The Markov chain Monte Garlo(MGMC)method is used to explore the whole parameter space.We find that the dipole anisotropy is very weak in all cosmological models used.Although the dipole amplitudes of four cosmological models are consistent with zero within the 1σuncertainty,the dipole directions are close to the axial direction of the plane of the SDSS subsample in Pantheon.This may imply that the weak dipole anisotropy in the Pantheon sample originates from the inhomogeneous distribution of the SDSS subsample.A more homogeneous distribution of SNe la is necessary to constrain the cosmic anisotropy.展开更多
The truncated version of the two-parameter Sujatha distribution is analysed. In particular, its probability density function and distribution function are obtained. The results are applied to the initial mass function...The truncated version of the two-parameter Sujatha distribution is analysed. In particular, its probability density function and distribution function are obtained. The results are applied to the initial mass function for stars, to the luminosity function for galaxies, to the number of galaxies as a function of the redshift and to the average absolute magnitude of a galaxy as a function of its redshift.展开更多
We derive the truncated version of the Weibull—Pareto distribution, deriving the probability density function, the distribution function, the average value, the rth moment about the origin, the media, the random gene...We derive the truncated version of the Weibull—Pareto distribution, deriving the probability density function, the distribution function, the average value, the rth moment about the origin, the media, the random generation of values and the maximum likelihood estimator which allows deriving the three parameters. The astrophysical applications of the Weibull—Pareto distribution are the initial mass function for stars, the luminosity function for the galaxies of the Sloan Digital Sky Survey, the luminosity function for QSO and the photometric maximum of galaxies of the 2 MASS Redshift Survey.展开更多
A new analytical solution for the luminosity distance in flat ΛCDM cosmology is derived in terms of elliptical integrals of first kind with real argument. The consequent derivation of the distance modulus allows eval...A new analytical solution for the luminosity distance in flat ΛCDM cosmology is derived in terms of elliptical integrals of first kind with real argument. The consequent derivation of the distance modulus allows evaluating the Hubble constant, H0=69.77±0.33, ΩM=0.295±0.008, and the cosmological constant, .展开更多
An enhancement in the number of galaxies as function of the redshift is visible on the SDSS Photometric Catalogue DR 12 at z = 0.383. This over-density of galaxies is named the Great Wall. This variable number of gala...An enhancement in the number of galaxies as function of the redshift is visible on the SDSS Photometric Catalogue DR 12 at z = 0.383. This over-density of galaxies is named the Great Wall. This variable number of galaxies as a function of the redshift can be explained in the framework of the luminosity function for galaxies. The differential of the luminosity distance in respect to the redshift is evaluated in the framework of the LCDM cosmology.展开更多
The giant arcs in the clusters of galaxies are modeled in the framework of the superbubbles. The density of the intracluster medium is assumed to follow a hyperbolic behavior. The analytical law of motion is function ...The giant arcs in the clusters of galaxies are modeled in the framework of the superbubbles. The density of the intracluster medium is assumed to follow a hyperbolic behavior. The analytical law of motion is function of the elapsed time and the polar angle. As a consequence the flux of kinetic energy in the expanding thin layer decreases with increasing polar angle making the giant arc invisible to the astronomical observations. In order to calibrate the arcsec-parsec conversion three cosmologies are analyzed.展开更多
Based on the Sloan Digital Sky Survey DR6 (SDSS) and the 'Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tool...Based on the Sloan Digital Sky Survey DR6 (SDSS) and the 'Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(20)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L 〉 ~L*) galaxies out to projected separations of 60 h-lMpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of -25°. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for cen- tral galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference galaxy distribution to be fl展开更多
Rhombic cell analysis as outlined in the first paper of the present series is applied to samples of varying depths and liming luminosities of the IRAS/PSCz Catalogue. Numerical indices are introduced to summarize esse...Rhombic cell analysis as outlined in the first paper of the present series is applied to samples of varying depths and liming luminosities of the IRAS/PSCz Catalogue. Numerical indices are introduced to summarize essential information. Because of the discrete nature of the analysis and of the space distribution of galaxies, the indices for a given sample must be regarded as each having an irreducible scatter. Despite the scatter, the mean indices show remarkable variations across the samples. The underlying factor for the variations is shown to be the limiting luminosity rather than the sampling depth. As samples of more and more luminous galaxies are considered over a range of some 2.5 magnitudes (a factor of some 75 in space density), the morphology of the filled and empty regions defined by the galaxies degrades steadily towards insignificance, and the degrading is faster for the filled than the empty region.展开更多
Using a sample of galaxies selected from the Sloan Digital Sky Survey Data Release 7(SDSS DR7) and a catalog of bulge-disk decompositions, we study how the size distribution of galaxies depends on the intrinsic proper...Using a sample of galaxies selected from the Sloan Digital Sky Survey Data Release 7(SDSS DR7) and a catalog of bulge-disk decompositions, we study how the size distribution of galaxies depends on the intrinsic properties of galaxies, such as concentration, morphology, specific star formation rate(sSFR),and bulge fraction, and on the large-scale environments in the context of central/satellite decomposition,halo environment, the cosmic web: cluster, filament, sheet and void, as well as galaxy number density. We find that there is a strong dependence of the luminosity-or mass-size relation on the galaxy concentration, morphology, s SFR and bulge fraction. Compared with late-type(spiral) galaxies, there is a clear trend of smaller sizes and steeper slope for early-type(elliptical) galaxies. Similarly, galaxies with a high bulge fraction have smaller sizes and steeper slopes than those with a low bulge fraction. Fitting formulae of the average luminosity-and mass-size relations are provided for galaxies with these different intrinsic properties. Examining galaxies in terms of their large scale environments, we find that the masssize relation has some weak dependence on the halo mass and central/satellite segregation for galaxies within mass range 9.0 ≤ log M*≤ 10.5, where satellites or galaxies in more massive halos have slightly smaller sizes than their counterparts, while the cosmic web and local number density dependence of the mass-size relation is almost negligible.展开更多
A new way of probing the large-scale structure of the universe is proposed. Space is partitioned into cells the shape of rhombic dodecahedron. The cells are labelled 'filled' or 'empty' according as th...A new way of probing the large-scale structure of the universe is proposed. Space is partitioned into cells the shape of rhombic dodecahedron. The cells are labelled 'filled' or 'empty' according as they contain galaxies or not. The cell size is so chosen as to have nearly equal numbers of filled and empty cells for the given galaxy sample. Two observables on each cell are definable: the number of its like neighbors, n1, and a two-suffixed topological type τ, the suffixes being the numbers of its like and unlike neighbor-groups. The frequency distributions of n1 and T in the observed set of filled (empty) cells are then considered as indicators of the morphology of the set. The method is applied to the CfA catalogue of galaxies as an illustration. Despite its limited size, the data offers evidence 1) that the empty cells are more strongly clustered than the filled cells, and 2) that the filled cells, but not the empty cells, have a tendency to occur in sheets. Further directions of development both in theory and application are indicated.展开更多
文摘Three mechanisms for an alternative to the Doppler effect as an explanation for the redshift are reviewed. A fourth mechanism is the attenuation of the light as given by the Beer-Lambert law. The average value of the Hubble constant is therefore derived by processing the galaxies of the NED-D catalog in which the distances are independent of the redshift. The observed anisotropy of the Hubble constant is reproduced by adopting a rim model, a chord model, and both 2D and 3D Voronoi diagrams.
文摘We demonstrate that certain astrophysical distributions can be modelled with the truncated Weibull distribution, which can lead to some insights: in particular, we report the average value, the <em>r</em>th moment, the variance, the median, the mode, the generation of random numbers, and the evaluation of the two parameters with maximum likelihood estimators. The first application of the Weibull distribution is the initial mass function for stars. The magnitude version of the Weibull distribution is applied to the luminosity function for the Sloan Digital Sky Survey (SDSS) galaxies and to the photometric maximum of the 2MASS Redshift Survey (2MRS) galaxies. The truncated Weibull luminosity function allows us to model the average value of the absolute magnitude as a function of the redshift for the 2MRS galaxies.
基金Supported by National Natural Science Foundation of China(11675182,11690022)
文摘We test the possible dipole anisotropy of the Finslerian cosmological model and the other three dipolemodulated cosmological models,i.e.the dipole-modulated ACDM,wCDM and Chevallier-Polarski-Linder(CPL)models,by using the recently released Pantheon sample of SNe la.The Markov chain Monte Garlo(MGMC)method is used to explore the whole parameter space.We find that the dipole anisotropy is very weak in all cosmological models used.Although the dipole amplitudes of four cosmological models are consistent with zero within the 1σuncertainty,the dipole directions are close to the axial direction of the plane of the SDSS subsample in Pantheon.This may imply that the weak dipole anisotropy in the Pantheon sample originates from the inhomogeneous distribution of the SDSS subsample.A more homogeneous distribution of SNe la is necessary to constrain the cosmic anisotropy.
文摘The truncated version of the two-parameter Sujatha distribution is analysed. In particular, its probability density function and distribution function are obtained. The results are applied to the initial mass function for stars, to the luminosity function for galaxies, to the number of galaxies as a function of the redshift and to the average absolute magnitude of a galaxy as a function of its redshift.
文摘We derive the truncated version of the Weibull—Pareto distribution, deriving the probability density function, the distribution function, the average value, the rth moment about the origin, the media, the random generation of values and the maximum likelihood estimator which allows deriving the three parameters. The astrophysical applications of the Weibull—Pareto distribution are the initial mass function for stars, the luminosity function for the galaxies of the Sloan Digital Sky Survey, the luminosity function for QSO and the photometric maximum of galaxies of the 2 MASS Redshift Survey.
文摘A new analytical solution for the luminosity distance in flat ΛCDM cosmology is derived in terms of elliptical integrals of first kind with real argument. The consequent derivation of the distance modulus allows evaluating the Hubble constant, H0=69.77±0.33, ΩM=0.295±0.008, and the cosmological constant, .
文摘An enhancement in the number of galaxies as function of the redshift is visible on the SDSS Photometric Catalogue DR 12 at z = 0.383. This over-density of galaxies is named the Great Wall. This variable number of galaxies as a function of the redshift can be explained in the framework of the luminosity function for galaxies. The differential of the luminosity distance in respect to the redshift is evaluated in the framework of the LCDM cosmology.
文摘The giant arcs in the clusters of galaxies are modeled in the framework of the superbubbles. The density of the intracluster medium is assumed to follow a hyperbolic behavior. The analytical law of motion is function of the elapsed time and the polar angle. As a consequence the flux of kinetic energy in the expanding thin layer decreases with increasing polar angle making the giant arc invisible to the astronomical observations. In order to calibrate the arcsec-parsec conversion three cosmologies are analyzed.
基金supported by NSFC (Nos. 10533030, 10821302,10878001)the Knowledge Innovation Program of CAS (No. KJCX2-YW-T05)by 973 Program(No. 2007CB815402).
文摘Based on the Sloan Digital Sky Survey DR6 (SDSS) and the 'Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(20)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L 〉 ~L*) galaxies out to projected separations of 60 h-lMpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of -25°. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for cen- tral galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference galaxy distribution to be fl
文摘Rhombic cell analysis as outlined in the first paper of the present series is applied to samples of varying depths and liming luminosities of the IRAS/PSCz Catalogue. Numerical indices are introduced to summarize essential information. Because of the discrete nature of the analysis and of the space distribution of galaxies, the indices for a given sample must be regarded as each having an irreducible scatter. Despite the scatter, the mean indices show remarkable variations across the samples. The underlying factor for the variations is shown to be the limiting luminosity rather than the sampling depth. As samples of more and more luminous galaxies are considered over a range of some 2.5 magnitudes (a factor of some 75 in space density), the morphology of the filled and empty regions defined by the galaxies degrades steadily towards insignificance, and the degrading is faster for the filled than the empty region.
基金supported by the National Basic Research Program of China (973 Program, 2015CB857002)the National Natural Science Foundation of China (Grant Nos. 11233005 and 11621303)+3 种基金supported by the High Performance Computing Resource in the Core Facility for Advanced Research Computing at Shanghai Astronomical ObservatoryFunding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundationthe U.S. Department of Energy Office of Sciencesupport and resources from the Center for High-Performance Computing at the University of Utah
文摘Using a sample of galaxies selected from the Sloan Digital Sky Survey Data Release 7(SDSS DR7) and a catalog of bulge-disk decompositions, we study how the size distribution of galaxies depends on the intrinsic properties of galaxies, such as concentration, morphology, specific star formation rate(sSFR),and bulge fraction, and on the large-scale environments in the context of central/satellite decomposition,halo environment, the cosmic web: cluster, filament, sheet and void, as well as galaxy number density. We find that there is a strong dependence of the luminosity-or mass-size relation on the galaxy concentration, morphology, s SFR and bulge fraction. Compared with late-type(spiral) galaxies, there is a clear trend of smaller sizes and steeper slope for early-type(elliptical) galaxies. Similarly, galaxies with a high bulge fraction have smaller sizes and steeper slopes than those with a low bulge fraction. Fitting formulae of the average luminosity-and mass-size relations are provided for galaxies with these different intrinsic properties. Examining galaxies in terms of their large scale environments, we find that the masssize relation has some weak dependence on the halo mass and central/satellite segregation for galaxies within mass range 9.0 ≤ log M*≤ 10.5, where satellites or galaxies in more massive halos have slightly smaller sizes than their counterparts, while the cosmic web and local number density dependence of the mass-size relation is almost negligible.
文摘A new way of probing the large-scale structure of the universe is proposed. Space is partitioned into cells the shape of rhombic dodecahedron. The cells are labelled 'filled' or 'empty' according as they contain galaxies or not. The cell size is so chosen as to have nearly equal numbers of filled and empty cells for the given galaxy sample. Two observables on each cell are definable: the number of its like neighbors, n1, and a two-suffixed topological type τ, the suffixes being the numbers of its like and unlike neighbor-groups. The frequency distributions of n1 and T in the observed set of filled (empty) cells are then considered as indicators of the morphology of the set. The method is applied to the CfA catalogue of galaxies as an illustration. Despite its limited size, the data offers evidence 1) that the empty cells are more strongly clustered than the filled cells, and 2) that the filled cells, but not the empty cells, have a tendency to occur in sheets. Further directions of development both in theory and application are indicated.