To study the impact of modern coal mining on overlying strata and its water bearing conditions,integrated time-lapse geophysical prospecting integrating 3D seismic,electrical and ground penetrating radar method were u...To study the impact of modern coal mining on overlying strata and its water bearing conditions,integrated time-lapse geophysical prospecting integrating 3D seismic,electrical and ground penetrating radar method were used.Through observing and analyzing the geophysical data variations of all stages of pre-mining,mining and post-mining as well as post-mining deposition stable period,impacts of coal mining on stratigraphic structure and its water bearing were studied and modern coal mining induced stratigraphic change pattern was summarized.The research result shows that the stratigraphic structure and the water bearing of surface layer during modern coal mining have self-healing pattern with mining time;the self-healing capability of near-surface strata is relatively strong while the roof weak;water bearing selfhealing of near-surface strata is relatively high while the roof strata adjacent to mined coal beds low.Due to integrated time-lapse geophysical prospecting technology has extra time dimension which makes up the deficiency of static analysis of conventional geophysical methods,it can better highlight the dynamic changes of modern coal mining induced overburden strata and its water bearing conditions.展开更多
Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic...Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, time- consuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale.展开更多
The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across ...The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across the Qinghai-Tibet Plateau. The results show that temperature variations not only depend on altitude but also latitude, and there is a gradual decrease in temperature with the increasing altitude and latitude. The overall trend for the vertical temperature lapse rate for the whole plateau is approximately linear. Three methods, namely multivariate composite analysis, simple correlation and traditional stepwise regression, were applied to analyze these three correlations. The results assessed with the first method are well matched to those with the latter two methods. The apparent mean annual near-surface lapse rate is -4.8 ℃ /km and the latitudinal effect is -0.87 ℃ /°latitude. In summer, the altitude influences the temperature variations more significantly with a July lapse rate of -4.3℃/km and the effect of latitude is only -0.28℃ /°latitude. In winter, the reverse happens. The temperature decrease is mainly due to the increase in latitude. The mean January lapse rate is -5.0℃/km, while the effect of latitude is -1.51℃ /°latitude. Comparative analysis for pairs of adjacent stations shows that at a small spatial scale the difference in altitude is the dominant factor affecting differences in mean annual near-surface air temperature, aided to some extent bydifferences of latitude. In contrast, the lapse rate in a small area is greater than the overall mean value for the Qinghai-Tibet Plateau (5 to 13℃ /km). An increasing trend has been detected for the surface lapse rate with increases in altitude. The temperature difference has obvious seasonal variations, and the trends for the southern group of stations (south of 33 o latitude) and for the more northerly group are opposite, mainly because of the differences in seasonal variation at low altitudes. For yearly changes, the tem展开更多
Although the residual layer has already been noted in the classical diurnal cycle of the atmospheric boundary layer, its effect on the development of the convective boundary layer has not been well studied. In this st...Although the residual layer has already been noted in the classical diurnal cycle of the atmospheric boundary layer, its effect on the development of the convective boundary layer has not been well studied. In this study, based on 3-hourly 20th century reanalysis data, the residual layer is considered as a common layer capping the convective boundary layer. It is identified dally by investigating the development of the convective boundary layer. The region of interest is bounded by (30^-60~N, 80^-120~E), where a residual layer deeper than 2000 m has been reported using radiosondes. The lapse rate and wind shear within the residual layer are compared with the surface sensible heat flux by investigating their climatological means, interannual variations and daily variations. The lapse rate of the residual layer and the convective boundary layer depth correspond well in their seasonal variations and climatological mean patterns. On the interannual scale, the correlation coefficient between their regional averaged (40°-50°N, 90°-110°E) variations is higher than that between the surface sensible heat flux and convective boundary layer depth. On the daily scale, the correlation between the lapse rate and the convective boundary layer depth in most months is still statistically significant during 1970-2012. Therefore, we suggest that the existence of a deep neutral residual layer is crucial to the formation of a deep convective boundary layer near the Mongolian regions.展开更多
In order to understand the development of stem cells into specialized mature cells it is necessary to study the growth of cells in culture. For this purpose it is very useful to have an efficient computerized cell tra...In order to understand the development of stem cells into specialized mature cells it is necessary to study the growth of cells in culture. For this purpose it is very useful to have an efficient computerized cell tracking system. In this paper a prototype system for tracking neural stem cells in a sequence of images is described. In order to get reliable tracking results it is important to have good and robust segmentation of the cells. To achieve this we have implemented three levels of segmentation. The primary level, applied to all frames, is based on fuzzy threshold and watershed segmentation of a fuzzy gray weighted distance transformed image. The second level, applied to difficult frames where the first algorithm seems to have failed, is based on a fast geometric active contour model based on the level set algorithm. Finally, the automatic segmentation result on the crucial first frame can be interactively inspected and corrected. Visual inspection and correction can also be applied to other frames but this is generally not needed. For the tracking all cells are classified into inactive, active, dividing and clustered cells. Different algorithms are used to deal with the different cell categories. A special backtracking step is used to automatically correct for some common errors that appear in the initial forward tracking process.展开更多
In this study, Land Surface Temperature(LST) and its lapse rate over the mountainous Kashmir Himalaya was estimated using MODIS data and correlated with the observed in-situ air temperature(Tair) data. Comparison betw...In this study, Land Surface Temperature(LST) and its lapse rate over the mountainous Kashmir Himalaya was estimated using MODIS data and correlated with the observed in-situ air temperature(Tair) data. Comparison between the MODIS LST and Tair showed a close agreement with the maximum error of the estimate ±1°C and the correlation coefficient >0.90. Analysis of the LST data from 2002-2012 showed an increasing trend at all the selected locations except at a site located in the southeastern part of Kashmir valley. Using the GTOPO30 DEM, MODIS LST data was used to estimate the actual temperature lapse rate(ATLR) along various transects across Kashmir Himalaya, which showed significant variations in space and time ranging from 0.3°C to 1.2°C per 100 m altitude change. This observation is at variance with the standard temperature lapse rate(STLR) of 0.65°C used universally in most of the hydrological and other land surface models. Snowmelt Runoff Model(SRM) was used to determine the efficacy of using the ATLR for simulating the stream flows in one of the glaciated and snow-covered watersheds in Kashmir. The use of ATLR in the SRM model improved the R2 between the observed and predicted streamflows from 0.92 to 0.97.It is hoped that the operational use of satellite-derived LST and ATLR shall improve the understanding and quantification of various processes related to climate, hydrology and ecosystem in the mountainous and data-scarce Himalaya where the use of temperature and ATLR are critical parameters for understanding various land surface and climate processes.展开更多
The Alborz Mountains are some of the highest in Iran,and they play an important role in controlling the climate of the country’s northern regions.The land surface temperature(LST)is an important variable that affects...The Alborz Mountains are some of the highest in Iran,and they play an important role in controlling the climate of the country’s northern regions.The land surface temperature(LST)is an important variable that affects the ecosystem of this area.This study investigated the spatiotemporal changes and trends of the nighttime LST in the western region of the Central Alborz Mountains at elevations of 1500-4000 m above sea level.MODIS data were extracted for the period of 2000-2021,and the Mann-Kendall nonparametric test was applied to evaluating the changes in the LST.The results indicated a significant increasing trend for the monthly average LST in May-August along the southern aspect.Both the northern and southern aspects showed decreasing trends for the monthly average LST in October,November,and March and an increasing trend in other months.At all elevations,the average decadal change in the monthly average LST was more severe along the southern aspect(0.60°C)than along the northern aspect(0.37°C).The LST difference between the northern and southern aspects decreased in the cold months but increased in the hot months.At the same elevation,the difference in the lapse rate between the northern and southern aspects was greater in the hot months than in the cold months.With increasing elevation,the lapse rate between the northern and southern aspects disappeared.Climate change was concluded to greatly decrease the difference in LST at different elevations for April-July.展开更多
Background:Much has been written about the loss to follow-up in the transition between pediatric and adult Congenital Heart Disease(CHD)care centers.Much less is understood about the loss to follow-up(LTF)after a succ...Background:Much has been written about the loss to follow-up in the transition between pediatric and adult Congenital Heart Disease(CHD)care centers.Much less is understood about the loss to follow-up(LTF)after a successful transition.This is critical too,as patients lost to specialised care are more likely to experience mor-bidity and premature mortality.Aims:To understand the prevalence and reasons for loss to follow-up(LTF)at a large Australian Adult Congenital Heart Disease(ACHD)centre.Methods:Patients with moderate or highly complex CHD and gaps in care of>3 years(defined as LTF)were identified from a comprehensive ACHD data-base.Structured telephone interviews examined current care and barriers to clinic attendance.Results:Overall,407(22%)of ACHD patients(n=1842)were LTF.The mean age at LTF was 31(SD 11.5)years and 54%were male;311(76%)were uncontactable.Compared to adults seen regularly,lost patients were younger,with a greater socio-economic disadvantage,and had less complex CHD(p<0.05 for all).We interviewed 59 patients(14%).The top 3 responses for care absences were“feeling well”(61%),losing track of time(36%),and not needing fol-low-up care(25%).Conclusions:A large proportion of the ACHD population becomes lost to specialised cardiac care,even after a successful transition.This Australian study reports younger age,moderate complexity defects,and socio-economic disadvantage as predictive of loss to follow-up.This study highlights the need for novel approaches to patient-centered service delivery even beyond the age of transition and resources to maintain patient engagement within the ACHD service.展开更多
Surface uplift at the southeastern margin of the Tibetan Plateau has been widely studied,but more palaeoaltimetry data are required to better understand the elevation history of this geologically complex region.In thi...Surface uplift at the southeastern margin of the Tibetan Plateau has been widely studied,but more palaeoaltimetry data are required to better understand the elevation history of this geologically complex region.In this study,fossil leaves of Abies(Pinaceae),a cool-temperate element,recovered from the latest Miocene-Pliocene Yangyi Formation of the southern Baoshan Basin,were used as a proxy to estimate the local palaeoelevation.Based on the regional modern altitude range(2100-4280 m)of the genus as well as regional temperature discrepancy(1.5℃)between the past and present,the palaeoelevation of the study area was calculated to be>2360 m above sea level as compared to 1670 m at present.Our result suggests that the southern Baoshan Basin experienced pronounced uplift prior to the time of fossil deposition,probably as a result of crustal shortening and thickening of the northern Baoshan Terrane during the Eocene-Oligocene.We infer that surface growth in areas south of the Dali Basin may have been greater than previously interpreted,and that a widespread plateau or plateau patches higher than 2000 m probably extended southwards into at least the Baoshan Basin by the latest Miocene-Pliocene.We also infer that the elevation of the southern Baoshan Basin has decreased by at least 690 m since then,in contrast to most other scenarios in which the elevation of the southeastern margin of the Tibetan Plateau has increased or remained close to modern levels since the late Miocene.The major cause of the inferred altitude decline is likely tectonic deformation.As a transtensional graben basin,the Baoshan Basin has experienced pull-apart and base-fall movement since the late Miocene,which would reduce the altitude of its southern part located on the hanging wall.Surface erosion associated with the increased summer rainfall might also have played a role especially in reducing the local relief,although its contribution can be limited.Our study provides one of the few palaeoelevation estimates from areas south of the Dali Basin a展开更多
The near-surface lapse rate reflects the atmospheric stability above the surface.Lapse rates calculated from land surface temperature(γTs)and near-surface air temperature( γTa )have been widely used.However,γTs and...The near-surface lapse rate reflects the atmospheric stability above the surface.Lapse rates calculated from land surface temperature(γTs)and near-surface air temperature( γTa )have been widely used.However,γTs and γTa have different sensitivity to local surface energy balance and large-scale energy transport and therefore they may have diverse spatial and temporal variability,which has not been clearly illustrated in existing studies.In this study,we calculated and compared γTa and γTs at^2200 stations over China from 1961 to 2014.This study finds that γTa and γTs have a similar multiyear national average(0.53°C/100 m)and seasonal cycle.Nevertheless,γTs shows steeper multiyear average than γTa at high latitudes,and γTs in summer is steeper than γTa ,especially in Northwest China.The North China shows the shallowest γTa and γTs,then inhibiting the vertical diffusion of air pollutants and further reducing the lapse rates due to accumulation of pollutants.Moreover,the long-term trend signs for γTa and γTs are opposite in northern China.However,the trends in γTa and γTs are both negative in Southwest China and positive in Southeast China.Surface incident solar radiation,surface downward longwave radiation and precipitant frequency jointly can account for 80%and 75%of the long-term trends in γTa and γTs in China,respectively,which provides an explanation of trends of γTa and γTs from perspective of surface energy balance.展开更多
Based on the statistical analysis, the author studied the geographic distribution of altitudinal lapse rate of temperature (ALRT) in China from points of the difference of the ALRT between the south and north, annual ...Based on the statistical analysis, the author studied the geographic distribution of altitudinal lapse rate of temperature (ALRT) in China from points of the difference of the ALRT between the south and north, annual change of the ALRT and effect of macrotopography on the ALRT, using temperature data from 671 national standard meteorological stations.展开更多
In this paper, we study the dynamic properties of an SIRI epidemic model incorporating media coverage, and stochastically perturbed by a Lévy noise. We establish the existence of a unique global positive solution...In this paper, we study the dynamic properties of an SIRI epidemic model incorporating media coverage, and stochastically perturbed by a Lévy noise. We establish the existence of a unique global positive solution. We investigate the dynamic properties of the solution around both disease-free and endemic equilibria points of the deterministic model depending on the basic reproduction number under some noise excitation. Furthermore, we present some numerical simulations to support the theoretical results.展开更多
All numerical weather prediction(NWP) models inherently have substantial biases, especially in the forecast of near-surface weather variables. Statistical methods can be used to remove the systematic error based on ...All numerical weather prediction(NWP) models inherently have substantial biases, especially in the forecast of near-surface weather variables. Statistical methods can be used to remove the systematic error based on historical bias data at observation stations. However, many end users of weather forecasts need bias corrected forecasts at locations that scarcely have any historical bias data. To circumvent this limitation, the bias of surface temperature forecasts on a regular grid covering Iran is removed, by using the information available at observation stations in the vicinity of any given grid point. To this end, the running mean error method is first used to correct the forecasts at observation stations, then four interpolation methods including inverse distance squared weighting with constant lapse rate(IDSW-CLR), Kriging with constant lapse rate(Kriging-CLR), gradient inverse distance squared with linear lapse rate(GIDS-LR), and gradient inverse distance squared with lapse rate determined by classification and regression tree(GIDS-CART), are employed to interpolate the bias corrected forecasts at neighboring observation stations to any given location. The results show that all four interpolation methods used do reduce the model error significantly,but Kriging-CLR has better performance than the other methods. For Kriging-CLR, root mean square error(RMSE)and mean absolute error(MAE) were decreased by 26% and 29%, respectively, as compared to the raw forecasts. It is found also, that after applying any of the proposed methods, unlike the raw forecasts, the bias corrected forecasts do not show spatial or temporal dependency.展开更多
Development of nanoparticle (NP) based therapies to promote regeneration in sites of central nervous system (CNS; i.e, brain and spinal cord) pathology relies critically on the availability of experimental models ...Development of nanoparticle (NP) based therapies to promote regeneration in sites of central nervous system (CNS; i.e, brain and spinal cord) pathology relies critically on the availability of experimental models that offer biologically valid predictions of NP fate in vivo. However, there is a major lack of biological models that mimic the pathological complexity of target neural sites in vivo, particularly the responses of resident neural immune cells to NPs. Here, we have utilised a previously developed in vitro model of traumatic spinal cord injury (based on 3-D organotypic slice arrays) with dynamic time lapse imaging to reveal in real-time the acute cellular fate of NPs within injury foci. We demonstrate the utility of our model in revealing the well documented phenomenon of avid NP sequestration by the intrinsic immune cells of the CNS (the microglia). Such immune sequestration is a known translational barrier to the use of NP-based therapeutics for neurological injury. Accordingly, we suggest that the utility of our model in mimicking microglial sequestration behaviours offers a valuable investigative tool to evaluate strategies to overcome this cellular response within a simple and biologically relevant experimental system, whilst reducing the use of live animal neurological injury models for such studies.展开更多
The hydrology of Himalayan region is influenced by temperature lapse rate(TLAPS)and precipitation lapse rate(PLAPS).Therefore,hydrological modeling considering TLAPS and PLAPS is crucial to manage the water resources ...The hydrology of Himalayan region is influenced by temperature lapse rate(TLAPS)and precipitation lapse rate(PLAPS).Therefore,hydrological modeling considering TLAPS and PLAPS is crucial to manage the water resources in these terrains.In this research,Himalayan Gandak River basin is considered as the study area where TLAPS and PLAPS vary significantly due to high altitude of Himalayas.To assess the impact of TLAPS and PLAPS on water balance components,Soil Water Assessment Tool(SWAT)model was calibrated(2000-2007)and validated(2008-2014)on daily time step for three projects i.e.,Reference Project(RP),Snowmelt Project(SP)and distributed elevation band snowmelt project(SWAT-ETISM).The analysis discloses that SWAT-ETISM model(which has TLAPS and PLAPS parameters)outperforms the RP and the SP models in predicting streamflow with improved statistical indicators R2=0.88,NSE=0.84 and PBIAS=11.9.Furthermore,it was observed that SWAT-ETISM model comprehensively improved the streamflow statistics by improving the snow water equivalent and water balance components through the consideration of TLAPS and PLAPS values for the region.Hence,the proposed SWAT-ETISM model can be used for estimation of the water budget at the high-altitude and data scarce alpine Himalayan regions and worldwide,where PLAPS and TLAPS are substantial due to altitudinal variation.展开更多
基金National Science and Technology Supporting Program(2012BAB13B01)National Key Scientific Instrument and Equipment Development Program(2012YQ030126)+2 种基金Coal United Project of National Natural Science Foundation(U1261203)China Geological Survey Project(1212011220798)National Science and Technology Major Project(2011ZX05035-004-001HZ).
文摘To study the impact of modern coal mining on overlying strata and its water bearing conditions,integrated time-lapse geophysical prospecting integrating 3D seismic,electrical and ground penetrating radar method were used.Through observing and analyzing the geophysical data variations of all stages of pre-mining,mining and post-mining as well as post-mining deposition stable period,impacts of coal mining on stratigraphic structure and its water bearing were studied and modern coal mining induced stratigraphic change pattern was summarized.The research result shows that the stratigraphic structure and the water bearing of surface layer during modern coal mining have self-healing pattern with mining time;the self-healing capability of near-surface strata is relatively strong while the roof weak;water bearing selfhealing of near-surface strata is relatively high while the roof strata adjacent to mined coal beds low.Due to integrated time-lapse geophysical prospecting technology has extra time dimension which makes up the deficiency of static analysis of conventional geophysical methods,it can better highlight the dynamic changes of modern coal mining induced overburden strata and its water bearing conditions.
基金supported by NSFC(Grant No.U1562109 and 41774082)the National Major Research Plan(Grant No.2016YFC0601100and 2016ZX05004)the Project of Scientific Research and Technological Development,CNPC(Grant No.2017D-5006-16)
文摘Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, time- consuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale.
基金financially supported by the National Natural Science Foundation of China (Grant No.40640420072 and No.40771006)
文摘The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across the Qinghai-Tibet Plateau. The results show that temperature variations not only depend on altitude but also latitude, and there is a gradual decrease in temperature with the increasing altitude and latitude. The overall trend for the vertical temperature lapse rate for the whole plateau is approximately linear. Three methods, namely multivariate composite analysis, simple correlation and traditional stepwise regression, were applied to analyze these three correlations. The results assessed with the first method are well matched to those with the latter two methods. The apparent mean annual near-surface lapse rate is -4.8 ℃ /km and the latitudinal effect is -0.87 ℃ /°latitude. In summer, the altitude influences the temperature variations more significantly with a July lapse rate of -4.3℃/km and the effect of latitude is only -0.28℃ /°latitude. In winter, the reverse happens. The temperature decrease is mainly due to the increase in latitude. The mean January lapse rate is -5.0℃/km, while the effect of latitude is -1.51℃ /°latitude. Comparative analysis for pairs of adjacent stations shows that at a small spatial scale the difference in altitude is the dominant factor affecting differences in mean annual near-surface air temperature, aided to some extent bydifferences of latitude. In contrast, the lapse rate in a small area is greater than the overall mean value for the Qinghai-Tibet Plateau (5 to 13℃ /km). An increasing trend has been detected for the surface lapse rate with increases in altitude. The temperature difference has obvious seasonal variations, and the trends for the southern group of stations (south of 33 o latitude) and for the more northerly group are opposite, mainly because of the differences in seasonal variation at low altitudes. For yearly changes, the tem
基金funded by the National Natural Science Foundation of China (Grant No. 41205005)the National Basic Research Program of China (Grant No.2010CB950503)+3 种基金the West Light Foundation of the Chinese Academy of Sciences to HAN Bo.The Twentieth Century Reanalysis Project dataset is provided by the U.S. Department of Energy, Office of Science Innovative and Novel Computational Impact on Theory and Experiment (DOE INCITE) programOffice of Biological and Environmental Research (BER)by the National Oceanic and Atmospheric Administration Climate Program Office
文摘Although the residual layer has already been noted in the classical diurnal cycle of the atmospheric boundary layer, its effect on the development of the convective boundary layer has not been well studied. In this study, based on 3-hourly 20th century reanalysis data, the residual layer is considered as a common layer capping the convective boundary layer. It is identified dally by investigating the development of the convective boundary layer. The region of interest is bounded by (30^-60~N, 80^-120~E), where a residual layer deeper than 2000 m has been reported using radiosondes. The lapse rate and wind shear within the residual layer are compared with the surface sensible heat flux by investigating their climatological means, interannual variations and daily variations. The lapse rate of the residual layer and the convective boundary layer depth correspond well in their seasonal variations and climatological mean patterns. On the interannual scale, the correlation coefficient between their regional averaged (40°-50°N, 90°-110°E) variations is higher than that between the surface sensible heat flux and convective boundary layer depth. On the daily scale, the correlation between the lapse rate and the convective boundary layer depth in most months is still statistically significant during 1970-2012. Therefore, we suggest that the existence of a deep neutral residual layer is crucial to the formation of a deep convective boundary layer near the Mongolian regions.
文摘In order to understand the development of stem cells into specialized mature cells it is necessary to study the growth of cells in culture. For this purpose it is very useful to have an efficient computerized cell tracking system. In this paper a prototype system for tracking neural stem cells in a sequence of images is described. In order to get reliable tracking results it is important to have good and robust segmentation of the cells. To achieve this we have implemented three levels of segmentation. The primary level, applied to all frames, is based on fuzzy threshold and watershed segmentation of a fuzzy gray weighted distance transformed image. The second level, applied to difficult frames where the first algorithm seems to have failed, is based on a fast geometric active contour model based on the level set algorithm. Finally, the automatic segmentation result on the crucial first frame can be interactively inspected and corrected. Visual inspection and correction can also be applied to other frames but this is generally not needed. For the tracking all cells are classified into inactive, active, dividing and clustered cells. Different algorithms are used to deal with the different cell categories. A special backtracking step is used to automatically correct for some common errors that appear in the initial forward tracking process.
基金Department of Science and Technology (DST), Government of India sponsored consortium project titled "Himalayan Cryosphere: Science and Society" and the financial assistance received from the Department under the project
文摘In this study, Land Surface Temperature(LST) and its lapse rate over the mountainous Kashmir Himalaya was estimated using MODIS data and correlated with the observed in-situ air temperature(Tair) data. Comparison between the MODIS LST and Tair showed a close agreement with the maximum error of the estimate ±1°C and the correlation coefficient >0.90. Analysis of the LST data from 2002-2012 showed an increasing trend at all the selected locations except at a site located in the southeastern part of Kashmir valley. Using the GTOPO30 DEM, MODIS LST data was used to estimate the actual temperature lapse rate(ATLR) along various transects across Kashmir Himalaya, which showed significant variations in space and time ranging from 0.3°C to 1.2°C per 100 m altitude change. This observation is at variance with the standard temperature lapse rate(STLR) of 0.65°C used universally in most of the hydrological and other land surface models. Snowmelt Runoff Model(SRM) was used to determine the efficacy of using the ATLR for simulating the stream flows in one of the glaciated and snow-covered watersheds in Kashmir. The use of ATLR in the SRM model improved the R2 between the observed and predicted streamflows from 0.92 to 0.97.It is hoped that the operational use of satellite-derived LST and ATLR shall improve the understanding and quantification of various processes related to climate, hydrology and ecosystem in the mountainous and data-scarce Himalaya where the use of temperature and ATLR are critical parameters for understanding various land surface and climate processes.
文摘The Alborz Mountains are some of the highest in Iran,and they play an important role in controlling the climate of the country’s northern regions.The land surface temperature(LST)is an important variable that affects the ecosystem of this area.This study investigated the spatiotemporal changes and trends of the nighttime LST in the western region of the Central Alborz Mountains at elevations of 1500-4000 m above sea level.MODIS data were extracted for the period of 2000-2021,and the Mann-Kendall nonparametric test was applied to evaluating the changes in the LST.The results indicated a significant increasing trend for the monthly average LST in May-August along the southern aspect.Both the northern and southern aspects showed decreasing trends for the monthly average LST in October,November,and March and an increasing trend in other months.At all elevations,the average decadal change in the monthly average LST was more severe along the southern aspect(0.60°C)than along the northern aspect(0.37°C).The LST difference between the northern and southern aspects decreased in the cold months but increased in the hot months.At the same elevation,the difference in the lapse rate between the northern and southern aspects was greater in the hot months than in the cold months.With increasing elevation,the lapse rate between the northern and southern aspects disappeared.Climate change was concluded to greatly decrease the difference in LST at different elevations for April-July.
文摘Background:Much has been written about the loss to follow-up in the transition between pediatric and adult Congenital Heart Disease(CHD)care centers.Much less is understood about the loss to follow-up(LTF)after a successful transition.This is critical too,as patients lost to specialised care are more likely to experience mor-bidity and premature mortality.Aims:To understand the prevalence and reasons for loss to follow-up(LTF)at a large Australian Adult Congenital Heart Disease(ACHD)centre.Methods:Patients with moderate or highly complex CHD and gaps in care of>3 years(defined as LTF)were identified from a comprehensive ACHD data-base.Structured telephone interviews examined current care and barriers to clinic attendance.Results:Overall,407(22%)of ACHD patients(n=1842)were LTF.The mean age at LTF was 31(SD 11.5)years and 54%were male;311(76%)were uncontactable.Compared to adults seen regularly,lost patients were younger,with a greater socio-economic disadvantage,and had less complex CHD(p<0.05 for all).We interviewed 59 patients(14%).The top 3 responses for care absences were“feeling well”(61%),losing track of time(36%),and not needing fol-low-up care(25%).Conclusions:A large proportion of the ACHD population becomes lost to specialised cardiac care,even after a successful transition.This Australian study reports younger age,moderate complexity defects,and socio-economic disadvantage as predictive of loss to follow-up.This study highlights the need for novel approaches to patient-centered service delivery even beyond the age of transition and resources to maintain patient engagement within the ACHD service.
基金supported by the National Natural Science Foundation of China(41972023,42272026)the Natural Science Foundation of Yunnan Province(202301AT070374,202201AT070131)+1 种基金the Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province(YNWR-QNBJ-2019-261)the West Light Foundation of the Chinese Academy of Sciences to Y.-J.Huang,and the Foundation of the State Key Laboratory of Palaeobiology and Stratigraphy,Nanjing Institute of Geology and Palaeontology,CAS(213106)。
文摘Surface uplift at the southeastern margin of the Tibetan Plateau has been widely studied,but more palaeoaltimetry data are required to better understand the elevation history of this geologically complex region.In this study,fossil leaves of Abies(Pinaceae),a cool-temperate element,recovered from the latest Miocene-Pliocene Yangyi Formation of the southern Baoshan Basin,were used as a proxy to estimate the local palaeoelevation.Based on the regional modern altitude range(2100-4280 m)of the genus as well as regional temperature discrepancy(1.5℃)between the past and present,the palaeoelevation of the study area was calculated to be>2360 m above sea level as compared to 1670 m at present.Our result suggests that the southern Baoshan Basin experienced pronounced uplift prior to the time of fossil deposition,probably as a result of crustal shortening and thickening of the northern Baoshan Terrane during the Eocene-Oligocene.We infer that surface growth in areas south of the Dali Basin may have been greater than previously interpreted,and that a widespread plateau or plateau patches higher than 2000 m probably extended southwards into at least the Baoshan Basin by the latest Miocene-Pliocene.We also infer that the elevation of the southern Baoshan Basin has decreased by at least 690 m since then,in contrast to most other scenarios in which the elevation of the southeastern margin of the Tibetan Plateau has increased or remained close to modern levels since the late Miocene.The major cause of the inferred altitude decline is likely tectonic deformation.As a transtensional graben basin,the Baoshan Basin has experienced pull-apart and base-fall movement since the late Miocene,which would reduce the altitude of its southern part located on the hanging wall.Surface erosion associated with the increased summer rainfall might also have played a role especially in reducing the local relief,although its contribution can be limited.Our study provides one of the few palaeoelevation estimates from areas south of the Dali Basin a
基金This work was supported by the National Key Research&Development Program of China(2017YFA0603601)the National Natural Science Foundation of China(41525018 and 41930970)。
文摘The near-surface lapse rate reflects the atmospheric stability above the surface.Lapse rates calculated from land surface temperature(γTs)and near-surface air temperature( γTa )have been widely used.However,γTs and γTa have different sensitivity to local surface energy balance and large-scale energy transport and therefore they may have diverse spatial and temporal variability,which has not been clearly illustrated in existing studies.In this study,we calculated and compared γTa and γTs at^2200 stations over China from 1961 to 2014.This study finds that γTa and γTs have a similar multiyear national average(0.53°C/100 m)and seasonal cycle.Nevertheless,γTs shows steeper multiyear average than γTa at high latitudes,and γTs in summer is steeper than γTa ,especially in Northwest China.The North China shows the shallowest γTa and γTs,then inhibiting the vertical diffusion of air pollutants and further reducing the lapse rates due to accumulation of pollutants.Moreover,the long-term trend signs for γTa and γTs are opposite in northern China.However,the trends in γTa and γTs are both negative in Southwest China and positive in Southeast China.Surface incident solar radiation,surface downward longwave radiation and precipitant frequency jointly can account for 80%and 75%of the long-term trends in γTa and γTs in China,respectively,which provides an explanation of trends of γTa and γTs from perspective of surface energy balance.
文摘Based on the statistical analysis, the author studied the geographic distribution of altitudinal lapse rate of temperature (ALRT) in China from points of the difference of the ALRT between the south and north, annual change of the ALRT and effect of macrotopography on the ALRT, using temperature data from 671 national standard meteorological stations.
文摘In this paper, we study the dynamic properties of an SIRI epidemic model incorporating media coverage, and stochastically perturbed by a Lévy noise. We establish the existence of a unique global positive solution. We investigate the dynamic properties of the solution around both disease-free and endemic equilibria points of the deterministic model depending on the basic reproduction number under some noise excitation. Furthermore, we present some numerical simulations to support the theoretical results.
文摘All numerical weather prediction(NWP) models inherently have substantial biases, especially in the forecast of near-surface weather variables. Statistical methods can be used to remove the systematic error based on historical bias data at observation stations. However, many end users of weather forecasts need bias corrected forecasts at locations that scarcely have any historical bias data. To circumvent this limitation, the bias of surface temperature forecasts on a regular grid covering Iran is removed, by using the information available at observation stations in the vicinity of any given grid point. To this end, the running mean error method is first used to correct the forecasts at observation stations, then four interpolation methods including inverse distance squared weighting with constant lapse rate(IDSW-CLR), Kriging with constant lapse rate(Kriging-CLR), gradient inverse distance squared with linear lapse rate(GIDS-LR), and gradient inverse distance squared with lapse rate determined by classification and regression tree(GIDS-CART), are employed to interpolate the bias corrected forecasts at neighboring observation stations to any given location. The results show that all four interpolation methods used do reduce the model error significantly,but Kriging-CLR has better performance than the other methods. For Kriging-CLR, root mean square error(RMSE)and mean absolute error(MAE) were decreased by 26% and 29%, respectively, as compared to the raw forecasts. It is found also, that after applying any of the proposed methods, unlike the raw forecasts, the bias corrected forecasts do not show spatial or temporal dependency.
文摘Development of nanoparticle (NP) based therapies to promote regeneration in sites of central nervous system (CNS; i.e, brain and spinal cord) pathology relies critically on the availability of experimental models that offer biologically valid predictions of NP fate in vivo. However, there is a major lack of biological models that mimic the pathological complexity of target neural sites in vivo, particularly the responses of resident neural immune cells to NPs. Here, we have utilised a previously developed in vitro model of traumatic spinal cord injury (based on 3-D organotypic slice arrays) with dynamic time lapse imaging to reveal in real-time the acute cellular fate of NPs within injury foci. We demonstrate the utility of our model in revealing the well documented phenomenon of avid NP sequestration by the intrinsic immune cells of the CNS (the microglia). Such immune sequestration is a known translational barrier to the use of NP-based therapeutics for neurological injury. Accordingly, we suggest that the utility of our model in mimicking microglial sequestration behaviours offers a valuable investigative tool to evaluate strategies to overcome this cellular response within a simple and biologically relevant experimental system, whilst reducing the use of live animal neurological injury models for such studies.
文摘The hydrology of Himalayan region is influenced by temperature lapse rate(TLAPS)and precipitation lapse rate(PLAPS).Therefore,hydrological modeling considering TLAPS and PLAPS is crucial to manage the water resources in these terrains.In this research,Himalayan Gandak River basin is considered as the study area where TLAPS and PLAPS vary significantly due to high altitude of Himalayas.To assess the impact of TLAPS and PLAPS on water balance components,Soil Water Assessment Tool(SWAT)model was calibrated(2000-2007)and validated(2008-2014)on daily time step for three projects i.e.,Reference Project(RP),Snowmelt Project(SP)and distributed elevation band snowmelt project(SWAT-ETISM).The analysis discloses that SWAT-ETISM model(which has TLAPS and PLAPS parameters)outperforms the RP and the SP models in predicting streamflow with improved statistical indicators R2=0.88,NSE=0.84 and PBIAS=11.9.Furthermore,it was observed that SWAT-ETISM model comprehensively improved the streamflow statistics by improving the snow water equivalent and water balance components through the consideration of TLAPS and PLAPS values for the region.Hence,the proposed SWAT-ETISM model can be used for estimation of the water budget at the high-altitude and data scarce alpine Himalayan regions and worldwide,where PLAPS and TLAPS are substantial due to altitudinal variation.