Bifurcation characteristics of the Langford system in a general form are systematically analysed, and nonlinear controls of periodic solutions changing into invariant tori in this system are achieved. Analytical relat...Bifurcation characteristics of the Langford system in a general form are systematically analysed, and nonlinear controls of periodic solutions changing into invariant tori in this system are achieved. Analytical relationship between control gain and bifurcation parameter is obtained. Bifurcation diagrams are drawn, showing the results of control for secondary Hopf bifurcation and sequences of bifurcations route to chaos. Numerical simulations of quasi-periodic tori validate analytic predictions.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10672053)
文摘Bifurcation characteristics of the Langford system in a general form are systematically analysed, and nonlinear controls of periodic solutions changing into invariant tori in this system are achieved. Analytical relationship between control gain and bifurcation parameter is obtained. Bifurcation diagrams are drawn, showing the results of control for secondary Hopf bifurcation and sequences of bifurcations route to chaos. Numerical simulations of quasi-periodic tori validate analytic predictions.