针对多数研究中车道线检测的准确性和实时性难以有效平衡的问题,提出了一种应用区域划分的车道线识别方法。首先通过改进的大津(OTSU)算法提取边缘图像,再在所得边缘图像的基础上,利用改进的概率霍夫变换(PPHT)提取车道标识线上的特征点...针对多数研究中车道线检测的准确性和实时性难以有效平衡的问题,提出了一种应用区域划分的车道线识别方法。首先通过改进的大津(OTSU)算法提取边缘图像,再在所得边缘图像的基础上,利用改进的概率霍夫变换(PPHT)提取车道标识线上的特征点,并采用最小二乘法(LSM)对特征点点集进行直线拟合,最后通过提出的路面干扰线规避算法检测所有拟合得到的直线段并筛选可能的车道线。在实验方面,引入三种算法作为对比,并利用提出的准确性评价模型对500幅典型道路场景图中的车道线识别结果进行评估,同时统计在处理一段长为1 min 26 s的道路视频时每帧图像序列的平均耗时。实验结果表明所提算法的查准率、查全率、F量测值均优于对比算法,且达到实时处理的要求。展开更多
针对目前车道线识别系统因处理对象为离线图像或视频文件而难以实现车道线在线识别的问题,大多数车道线识别算法为了减少图像处理运行量,通常选取固定的兴趣区域(region of interest,ROI)进行处理,导致难以适应环境的动态变化且存在不...针对目前车道线识别系统因处理对象为离线图像或视频文件而难以实现车道线在线识别的问题,大多数车道线识别算法为了减少图像处理运行量,通常选取固定的兴趣区域(region of interest,ROI)进行处理,导致难以适应环境的动态变化且存在不同程度的识别误差。为此,提出了一种基于机器视觉的不设定兴趣区域的车道线在线识别系统。首先,利用VBAI(Vision Builder for Automation Inspection)平台对实时采集的彩色道路图像进行预处理,完成彩色图像的灰度化、滤波及二值化处理。然后,建立图像坐标系,并构建多条向外发散的灰度值采集线,灰度值采集线与车道线相交处的灰度值会发生较大改变,当某点的灰度值高于设定的灰度阈值时,记该点为边缘突变点。接着,借助直线拟合算法对所有车道边缘突变点进行拟合以完成车道线识别,并求解两侧内车道线的远方消失交点坐标和车辆行驶偏离车道中心线的相对航偏角,当相对航偏角超过不同等级的安全阈值时,系统人机交互界面的提示框呈现不同的颜色以进行提醒或预警。最后,借助LabVIEW进行API(application programming interface,应用程序接口)脚本调用,实现图像处理程序的连续运行与车道线在线识别。试验结果表明,所提出的车道线在线识别系统的识别准确率达98.41%以上,相对航偏角的测量误差小于0.056°,图像处理速度达42帧/s以上,兼具识别的准确性与实时性。综上可知,基于机器视觉的车道线在线识别系统可有效识别出不同环境路面的车道线,并实现行驶偏离预警,可将其应用于基于自动驾驶技术的车道保持辅助(lane keeping assist,LKA)系统。展开更多
文摘针对多数研究中车道线检测的准确性和实时性难以有效平衡的问题,提出了一种应用区域划分的车道线识别方法。首先通过改进的大津(OTSU)算法提取边缘图像,再在所得边缘图像的基础上,利用改进的概率霍夫变换(PPHT)提取车道标识线上的特征点,并采用最小二乘法(LSM)对特征点点集进行直线拟合,最后通过提出的路面干扰线规避算法检测所有拟合得到的直线段并筛选可能的车道线。在实验方面,引入三种算法作为对比,并利用提出的准确性评价模型对500幅典型道路场景图中的车道线识别结果进行评估,同时统计在处理一段长为1 min 26 s的道路视频时每帧图像序列的平均耗时。实验结果表明所提算法的查准率、查全率、F量测值均优于对比算法,且达到实时处理的要求。