期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Landau-Ginzburg-Higgs方程的微扰理论 被引量:36
1
作者 潘留仙 左伟明 颜家壬 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第1期1-5,共5页
求出了一阶和二阶近似下微扰对Landau_Ginzburg_Higgs方程孤子解的影响 ,即求出了孤子参数随时间的缓慢变化关系及解的一阶修正和二阶修正的具体表达式 .
关键词 二阶 微扰理论 孤子解 近似 变化关系 表达式 方程 参数 具体 时间
原文传递
Landau-Ginzburg-Higgs方程的多辛Runge-Kutta方法 被引量:7
2
作者 胡伟鹏 邓子辰 +1 位作者 韩松梅 范玮 《应用数学和力学》 EI CSCD 北大核心 2009年第8期963-969,共7页
非线性波动方程作为一类重要的数学物理方程吸引着众多的研究者,基于Hamilton空间体系的多辛理论研究了Landau-Ginzburg-Higgs方程的多辛算法,讨论了利用Runge-Kutta方法构造离散多辛格式的途径,并构造了一种典型的半隐式的多辛格式,该... 非线性波动方程作为一类重要的数学物理方程吸引着众多的研究者,基于Hamilton空间体系的多辛理论研究了Landau-Ginzburg-Higgs方程的多辛算法,讨论了利用Runge-Kutta方法构造离散多辛格式的途径,并构造了一种典型的半隐式的多辛格式,该格式满足多辛守恒律、局部能量守恒律和局部动量守恒律.数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性. 展开更多
关键词 多辛 landau-ginzburg-higgs方程 Runge—Kutta方法 守恒律 孤子解
下载PDF
Construction of conservation laws for the Gardner equation,Landau-Ginzburg-Higgs equation,and Hirota-Satsuma equation
3
作者 Cheng Chen Faiza Afzal Yufeng Zhang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第5期49-57,共9页
In this paper,two different methods for calculating the conservation laws are used,these are the direct construction of conservation laws and the conservation theorem proposed by Ibragimov.Using these two methods,we o... In this paper,two different methods for calculating the conservation laws are used,these are the direct construction of conservation laws and the conservation theorem proposed by Ibragimov.Using these two methods,we obtain the conservation laws of the Gardner equation,Landau-Ginzburg-Higgs equation and Hirota-Satsuma equation,respectively. 展开更多
关键词 conservation laws landau-ginzburg-higgs equation Hirota-Satsuma equation Gardner equation
原文传递
Conserved vectors and symmetry solutions of the Landau–Ginzburg–Higgs equation of theoretical physics
4
作者 Chaudry Masood Khalique Mduduzi Yolane Thabo Lephoko 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第4期51-65,共15页
This paper is devoted to the investigation of the Landau–Ginzburg–Higgs equation(LGHe),which serves as a mathematical model to understand phenomena such as superconductivity and cyclotron waves.The LGHe finds applic... This paper is devoted to the investigation of the Landau–Ginzburg–Higgs equation(LGHe),which serves as a mathematical model to understand phenomena such as superconductivity and cyclotron waves.The LGHe finds applications in various scientific fields,including fluid dynamics,plasma physics,biological systems,and electricity-electronics.The study adopts Lie symmetry analysis as the primary framework for exploration.This analysis involves the identification of Lie point symmetries that are admitted by the differential equation.By leveraging these Lie point symmetries,symmetry reductions are performed,leading to the discovery of group invariant solutions.To obtain explicit solutions,several mathematical methods are applied,including Kudryashov's method,the extended Jacobi elliptic function expansion method,the power series method,and the simplest equation method.These methods yield solutions characterized by exponential,hyperbolic,and elliptic functions.The obtained solutions are visually represented through 3D,2D,and density plots,which effectively illustrate the nature of the solutions.These plots depict various patterns,such as kink-shaped,singular kink-shaped,bell-shaped,and periodic solutions.Finally,the paper employs the multiplier method and the conservation theorem introduced by Ibragimov to derive conserved vectors.These conserved vectors play a crucial role in the study of physical quantities,such as the conservation of energy and momentum,and contribute to the understanding of the underlying physics of the system. 展开更多
关键词 landau-ginzburg-higgs equation Lie symmetry analysis group invariant solutions conserved vectors multiplier method Ibragimov's method
原文传递
Multi-symplectic Runge-Kutta methods for Landau-Ginzburg-Higgs equation 被引量:2
5
作者 胡伟鹏 邓子辰 +1 位作者 韩松梅 范玮 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第8期1027-1034,共8页
Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic ... Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic theory in the Hamilton space. The multi-symplectic Runge-Kutta method is reviewed, and a semi-implicit scheme with certain discrete conservation laws is constructed to solve the first-order partial differential equations (PDEs) derived from the Landau-Ginzburg-Higgs equation. The numerical re- sults for the soliton solution of the Landau-Ginzburg-Higgs equation are reported, showing that the multi-symplectic Runge-Kutta method is an efficient algorithm with excellent long-time numerical behaviors. 展开更多
关键词 MULTI-SYMPLECTIC landau-ginzburg-higgs equation Runge-Kutta method conservation law soliton solution
下载PDF
Landau-Ginzburg-Higgs方程的渐进高阶周期解(英文)
6
作者 郑文晶 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期11-16,共6页
基于一个辅助的Lame方程和摄动法,研究了Landan-Ginzburg-Higgs方程,得到了该方程的新的Jacobi椭圆函数形式的高阶渐进周期解.在极限情形下,可还原为经典的孤立波解.
关键词 landauginzburghiggs方程 渐进高阶周期解 摄动法
下载PDF
Landau-Ginzburg-Higgs方程的多辛傅里叶拟谱格式
7
作者 张宇 邓子辰 +1 位作者 胡伟鹏 杨小锋 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第6期1011-1015,共5页
Landau-Ginzburg-Higgs方程是一个重要的非线性波动方程,应用多辛保结构理论研究了其多辛算法。首先,利用哈密顿变分原理构造了Landau-Ginzburg-Higgs方程的多辛格式;随后,通过空间方向上的傅里叶拟谱离散和时间方向上的辛欧拉离散得到... Landau-Ginzburg-Higgs方程是一个重要的非线性波动方程,应用多辛保结构理论研究了其多辛算法。首先,利用哈密顿变分原理构造了Landau-Ginzburg-Higgs方程的多辛格式;随后,通过空间方向上的傅里叶拟谱离散和时间方向上的辛欧拉离散得到了Landau-Ginzburg-Higgs方程的一种显式多辛离散格式;数值实验模拟了非周期边界的扭状孤立波,结果展示了多辛离散格式的精确性和保持局部守恒量的特性。 展开更多
关键词 landau-ginzburg-higgs方程 多辛积分 傅里叶拟谱方法 孤立波 局部守恒律
下载PDF
Landau-Ginzbrug-Higgs方程的新精确行波解(英文)
8
作者 周音 费琪 《西安工程大学学报》 CAS 2011年第3期426-429,共4页
结合其次平衡法,应用G/G′展开法构造行波解,得到了Landau-Ginzbrug-Higgs方程的一些带参数的精确行波解.结果表明,此方法在数学物理中,是得到非线性偏微分方程的精确行波解的一种强有力的工具,可以应用到其他非线性发展方程.
关键词 landau-Ginzbrug-higgs方程 G/G′展开法 其次平衡原理 精确行波解
下载PDF
微扰Landau-Ginzburg-Higgs方程的保结构数值分析 被引量:1
9
作者 胡伟鹏 张宇 邓子辰 《西北工业大学学报》 EI CAS CSCD 北大核心 2012年第6期957-960,共4页
基于Hamilton变分原理,构造了微扰Landau-Ginzburg-Higgs方程的一阶广义多辛对称形式,随后对该形式采用多辛差分离散构造其保结构离散格式,最后通过计算机模拟,研究了微扰对Lan-dau-Ginzburg-Higgs方程孤子解的影响,为微扰动力学系统的... 基于Hamilton变分原理,构造了微扰Landau-Ginzburg-Higgs方程的一阶广义多辛对称形式,随后对该形式采用多辛差分离散构造其保结构离散格式,最后通过计算机模拟,研究了微扰对Lan-dau-Ginzburg-Higgs方程孤子解的影响,为微扰动力学系统的数值研究提供了新的途径。 展开更多
关键词 有限差分方法 哈密尔顿 孤子解 广义多辛 微扰landauginzburg-higgs方程 保结构
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部