The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the vari...The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia. The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However, the opposite interdecadal variation was found in the rainfall anomaly in North China and South China. The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean, which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.展开更多
Based on multi-temporal topographic maps, remote sensing images and field surveys covering the entire coastal zone of China's Mainland, the coastlines of six periods since the early 1940s were extracted. Coastline...Based on multi-temporal topographic maps, remote sensing images and field surveys covering the entire coastal zone of China's Mainland, the coastlines of six periods since the early 1940s were extracted. Coastline changes over the last 70 years were then analyzed in terms of coastline structure, coastline fractals, coastline change rates, land-sea patterns, and bay areas. The results showed that mainland coastline structure changed dramatically, and due to the significant coastline artificialization mainly driven by sea reclamation and coastal engineering, the remaining natural coastline merely accounts for less than one third at present. Coastline fractal dimension represented an overall spatial pattern of "north 〈 entirety 〈 south"; however, the discrepancy between the north and south coast was apparently narrowed due to dramatic coastline artificialization of northern China which in turn altered the whole pattern. Patterns and processes of land-sea interchange along the mainland coast were complex and varied spatially and temporally, with over 68% advancing toward sea and 22% retreating toward land. The net growth of land area was nearly 14.2 ×10^3 km2 with an average growth rate of 202.82 km2 al; and coast retreat was characterized by area decrease of 93 bays with a magnitude of 10.1 ×10^3 km2 and an average shrinking rate up to 18.19% or an average shrinking speed up to 144.20 km2 a-1, among which the total area of Bohai shrunk by 7.06%, with an average annual loss amounting to 82 km2. The dramatic coastline changes along China's Mainland have brought about kinds of challenges to the coastal environment, therefore the integrated management, effective environment protection and sustainable utilization of coastlines is urgent.展开更多
The analysis of 43 years of NCEP-NCAR reanalysis data and station observations reveals the connections between tropospheric temperature variations and the weakening of the Indian summer monsoon circulation. The Indian...The analysis of 43 years of NCEP-NCAR reanalysis data and station observations reveals the connections between tropospheric temperature variations and the weakening of the Indian summer monsoon circulation. The Indian summer monsoon variation is strongly linked to tropospheric temperature over East Asia, showing significant positive correlations of mean tropospheric temperature with all-Indian summer rainfall and the monsoon circulation展开更多
Using the US Climate Prediction Center (CPC) soil moisture dataset and the observed precipitation over China together with the NCEP/NCAR reanalysis wind and air temperature, the relationship between June precipitati...Using the US Climate Prediction Center (CPC) soil moisture dataset and the observed precipitation over China together with the NCEP/NCAR reanalysis wind and air temperature, the relationship between June precipitation over mid-lower reaches of the Yangtze River basin (MLR-YRB) and spring soil moisture over the East Asian monsoon region was explored, with the signal of the ENSO effect on precipitation removed. A significant positive correlation was found between the mean June precipitation and the preceding soil moisture over the MRL-YRB. The possible response mechanism for this relationship was also investigated. It is found that when the soil over the MRL-YRB is wetter (drier) than normal in April and May, the air temperature in the lower troposphere over this region in May is lower (higher) than normal, and this temperature effect leads to a decrease (increase) in the temperature contrast between the land and the sea. Generally, a decrease (increase) in the land-sea temperature contrast leads to weaker (stronger) East Asian summer monsoon in June. Southerly (northerly) wind anomalies at 850 hPa then show up in the south of the Yangtze River basin while northerly (southerly) wind anomalies dominate in the north. These anomalies lead to the convergence (divergence) of wind and water vapor and hence gives rise to more (less) precipitation in June over the MLR-YRB.展开更多
This paper proposes an index of land-sea thermal difference(ILSTD)that describes its zonal and meridional strength responsible for East Asian monsoon circulation to study its relation to the East Asian monsoon circula...This paper proposes an index of land-sea thermal difference(ILSTD)that describes its zonal and meridional strength responsible for East Asian monsoon circulation to study its relation to the East Asian monsoon circulation and the summer rainfall over China on an interannual basis.Results are as follows:(1)ILSTD can be used to measure the strength of East Asian summer monsoon in such a way that the strong(weak)ILSTD years are associated with strong(weak)summer monsoon circulation.(2)The index also reflects well summer rainfall anomaly over the eastern part of China. In the strong index years,rain belt is mainly located over the northern China,and serious drought emerges in the Jianghuai valleys and mid-lower reaches of the Changjiang River,along with increase of rainfall in North and South China,but in the weak years it is contrary.(3)Besides,the index has obvious QBO and quasi 4-year oscillations,but the periods and amplitudes have significant changes on an interdecadal basis.展开更多
Observations of the South China Sea summer monsoon (SCSSM) demonstrate the different features between the early and late onsets of the monsoon. The determining factor related to the onset and the resultant monsoon r...Observations of the South China Sea summer monsoon (SCSSM) demonstrate the different features between the early and late onsets of the monsoon. The determining factor related to the onset and the resultant monsoon rainfall might be the off-equatorial ITCZ besides the land-sea thermal contrast. The northward-propagating cumulus convection over the northern Indian Ocean could enhance the monsoon trough so that the effect of the horizontal advection of moisture and heat is substantially increased, thus westerlies can eventually penetrate and prevail over the South China Sea (SCS) region.展开更多
The East Asian subtropical summer monsoon(EASSM) is one component of the East Asian summer monsoon system,and its evolution determines the weather and climate over East China.In the present paper,we firstly demonstr...The East Asian subtropical summer monsoon(EASSM) is one component of the East Asian summer monsoon system,and its evolution determines the weather and climate over East China.In the present paper,we firstly demonstrate the formation and advancement of the EASSM rainbelt and its associated circulation and precipitation patterns through reviewing recent studies and our own analysis based on JRA-55(Japanese 55-yr Reanalysis) data and CMAP(CPC Merged Analysis of Precipitation),GPCP(Global Precipitation Climatology Project),and TRMM(Tropical Rainfall Measuring Mission) precipitation data.The results show that the rainy season of the EASSM starts over the region to the south of the Yangtze River in early April,with the establishment of strong southerly wind in situ.The EASSM rainfall,which is composed of dominant convective and minor stratiform precipitation,is always accompanied by a frontal system and separated from the tropical summer monsoon system.It moves northward following the onset of the South China Sea summer monsoon.Moreover,the role of the land-sea thermal contrast in the formation and maintenance of the EASSM is illustrated,including in particular the effect of the seasonal transition of the zonal land-sea thermal contrast and the influences from the Tibetan Plateau and midlatitudes.In addition,we reveal a possible reason for the subtropical climate difference between East Asia and East America.Finally,the multi-scale variability of the EASSM and its influential factors are summarized to uncover possible reasons for the intraseasonal,interannual,and interdecadal variability of the EASSM and their importance in climate prediction.展开更多
Based upon the effect of land-sea interaction on the paleomonsoon variation and the time series of climatic proxy-indicators, the historical Asian monsoon variation over the last 130,000 and 18,000 years has been reco...Based upon the effect of land-sea interaction on the paleomonsoon variation and the time series of climatic proxy-indicators, the historical Asian monsoon variation over the last 130,000 and 18,000 years has been reconstructed with an emphasis on the basic characteristics of summer monsoon circulation. The monsoon-climatic cycles and associated model of environmental development over the central and eastern China are proposed and the mechanism of paleomonsoon variation of China preliminarily discussed. The variation of East Asian monsoon circulation should be regarded as a regional result of both solar-radiation changes and the global glacial-interglacial cycles. The episodic uplifting of the Qinghai-Xizang Plateau since the late Miocene has to a large extent controlled the forming and evolution of the paleomonsoon circulation of China.展开更多
Using a monthly precipitation dataset of 160 stations over China and a daily and monthly National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset from 1961 ...Using a monthly precipitation dataset of 160 stations over China and a daily and monthly National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset from 1961 to 2006, we here define an East Asian land-sea atmospheric heat source difference index ILSQD and investigate its relationship to summer rainfall in China and East Asian general circulation. The results show that ILSQD more closely reflects the anomalous variations in summer monsoon phenomena; in the high-index (HI) cases, the strong low-level southerlies over East China and the strong high-level westerlies over middle latitudes indicate an active summer monsoon, and vice versa in the low-index (LI) cases. This index also reflects summer rainfall anomalies over East China; in the HI (LI) cases rainfall increases (decreases) over North China and at the same time decreases (increases) over the mid-lower Yangtze River valley and the southern Yangtze River. Hence, ILSQD can be utilized as a summer monsoon index. There is also remarkable correlation between ILSQD in March and the following summer rainfall over the mid-lower Yangtze River valley. Finally, the Community Atmospheric Model Version 3.1 (CAM3.1) of NCAR is used to run numerical experiments, which verify that the anomalous summer precipitation in simulations is similar to that of diagnosis analysis based on the anomalous summer atmospheric heating forcing. Similarly, the atmospheric heating rate in March can force summer rainfall anomalies in the simulations just as observed in the data.展开更多
A 600-year integration performed with the Bergen Climate Model and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data were used to investigate the impa...A 600-year integration performed with the Bergen Climate Model and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data were used to investigate the impact of strong tropical volcanic eruptions on the East Asian summer monsoon (EASM) and EASM rainfall.Both the simulation and NCEP/NCAR reanalysis data show a weakening of the EASM in strong eruption years.The model simulation suggests that North and South China experience droughts and the Yangtze-Huaihe River Valley experiences floods during eruption years.In response to strong tropical volcanic eruptions,the meridional air temperature gradient in the upper troposphere is enhanced,which leads to a southward shift and an increase of the East Asian subtropical westerly jet stream (EASWJ).At the same time,the land-sea thermal contrast between the Asian land mass and Northwest Pacific Ocean is weakened.The southward shift and increase of the EASWJ and reduction of the land-sea thermal contrast all contribute to a weakening of the EASM and EASM rainfall anomaly.展开更多
As demonstrated in the first part of this study(Part I),wind-shift boundaries routinely form along the west coast of the Pearl River Delta due to the land-sea contrast of a“trumpet”shape coastline in the summer mons...As demonstrated in the first part of this study(Part I),wind-shift boundaries routinely form along the west coast of the Pearl River Delta due to the land-sea contrast of a“trumpet”shape coastline in the summer monsoon season.Through multiple numerical simulations,this article(Part II)aims to examine the roles of the trumpet-shaped coastline in the mesovortex genesis during the 1 June 2020 tornadic event.The modeling reproduced two mesovortices that are in close proximity in time and space to the realistic mesovortices.In addition to the modeled mesovortex over the triple point where strong ambient vertical vorticity was located,another mesovortex originated from an enhanced discrete vortex along an airmass boundary via shear instability.On the fine-scale storm morphology,finger-like echoes preceding hook echoes were also reproduced around the triple point.Results from sensitivity experiments suggest that the unique topography plays an essential role in modifying the vorticity budget during the mesovortex formation.While there is a high likelihood of an upcoming storm evolving into a rotating storm over the triple point,the simulation's accuracy is sensitive to the local environmental details and storm dynamics.The strengths of cold pool surges from upstream storms may influence the stretching of low-level vertically oriented vortex and thus the wrap-up of finger-like echoes.These findings suggest that the trumpet-shaped coastline is an important component of mesovortex production during the active monsoon season.It is hoped that this study will increase the situational awareness for forecasters regarding regional non-mesocyclone tornadic environments.展开更多
Identification of key SST zones is essential in predicting the weather / climate systems in East Asia. With the SST data by the U.K. Meteorological Office and 40-year geopotential height and wind fields by NCAR / NCEP...Identification of key SST zones is essential in predicting the weather / climate systems in East Asia. With the SST data by the U.K. Meteorological Office and 40-year geopotential height and wind fields by NCAR / NCEP, the relationship between the East Asian summer monsoon and north Pacific SSTA is studied, which reveals their interactions are of interdecadal variation. Before mid-1970’s, the north Pacific SSTA acts upon the summer monsoon in East Asia through a great circle wavetrain and results in more rainfall in the summer of the northern part of China. After 1976, the SSTA weakens the wavetrain and no longer influences the precipitation in North China due to loosened links with the East Asian summer monsoon. It can be drawn that the key SST zones having potential effects on the weather / climate systems in East Asia do not stay in one particular area of the ocean but rather shift elsewhere as governed by the interdecadal variations of the air-sea interactions. It is hoped that the study would help shed light on the prediction of drought / flood spans in China.展开更多
Iron(Fe)is an important element for the terrestrial and marine ecosystems through its biogeochemical cycling on the Earth’s surface.China has a long rice cultivation history,with extensive rice distribution across ma...Iron(Fe)is an important element for the terrestrial and marine ecosystems through its biogeochemical cycling on the Earth’s surface.China has a long rice cultivation history,with extensive rice distribution across many types of paddy soils.Paddy soils are the largest anthropogenic wetlands on earth with critical roles in ecosystem functions.The periodic artificial submergence and drainage during paddy soil evolution result in significant changes in soil moisture regime and redox conditions from the natural soils,which facilitate the increase of Fe solubility and mobilization.However,there is a lack of systematic assessment on the magnitude of the migration and loss amount of Fe from paddy soils.In order to quantify the Fe loss and assess the dynamic evolution of Fe in the soils after rice cultivation,seven paddy soil chronosequences derived from different landscapes(bog,plain,terrace)and parent materials(acidic,neutral,calcareous)with cultivation history from 0 to 2,000 yr were studied.Results showed that the rates and trajectories of Fe evolution showed distinct patterns among the studied seven paddy soil chronosequences.However,net losses of Fe from 1 m soil depth occurred at all studied paddy soil chronosequences regardless of the original landscapes and parent materials.Fe in the paddy soils derived from the calcareous lacustrine sediments in the bog area showed a slight accumulation during the initial stage(50 yr)of paddy cultivation,with a loss rate of0.026 kg m^(-2)yr^(-1) during the 50-to 500-yr time period.For the paddy soils developed on the calcareous marine sediments in the plain area,Fe evolution was dominated by the internal movement in soil profiles through coupled reducing-eluviation reactions in the surface horizons and oxidation-illuviation in the subsurface horizons within 1,000 yr of paddy cultivation,with an averaged net loss rate of 0.029 kg m^(-2)yr^(-1) during the 1,000-to 2,000-yr time period of rice cultivation.In contrast,Fe in the paddy soils derived from the acidic and neutral paren展开更多
The seasonal and interannual variations of the thermal contrast between Indo-China Peninsula (ICP) and South China Sea (SCS) were analyzed using the pentad mean NCEP/NCAR reanalysis data during 1958-1998 and the p...The seasonal and interannual variations of the thermal contrast between Indo-China Peninsula (ICP) and South China Sea (SCS) were analyzed using the pentad mean NCEP/NCAR reanalysis data during 1958-1998 and the pentad mean outgoing long-wave radiation (OLR) data during 1975-1998, along with the effects of such a thermal contrast on the SCS monsoon onset (SCSMO). It is shown that there exists significant seasonal evolution for such a thermal contrast. The surface temperature of ICP is higher than that of SCS from pentad 3 to pentad 25 due to the sensible heating of the ICP. After pentad 25, such a thermal gradient reverses due to the temperature decrease resulted from the convection and rainfall over the ICP from pentad 22 to pentad 23. Furthermore, the above seasonal evolution of the discussed thermal contrast also demonstrates a remarkable interannual change which plays an important role in the SCSMO. On one hand, the reversion happens prior to (or simultaneously with) the SCSMO each year during 1958- 1998, thus becoming a precondition for the SCSMO. On the other hand, the earlier (later) the date when the surface temperature of ICP becomes higher (lower) than that of the SCS, the later the SCSMO.展开更多
In the present study,the coal-rock organic facies of Oligocene Yacheng Formation of the marginal basin in the South China Sea were classified and divided.In addition,through the correlations of the large-scale coal-be...In the present study,the coal-rock organic facies of Oligocene Yacheng Formation of the marginal basin in the South China Sea were classified and divided.In addition,through the correlations of the large-scale coal-bearing basins between the epicontinental sea and the South China Sea,it was concluded that the coal forming activities in the South China Sea presented particularity and complexity.Furthermore,the coal forming mechanisms also presented distinctiveness.The marginal basins in the South China Sea consist of several large and complex rift or depression basins,which are distributed at different tectonic positions in the South China Sea.Therefore,the marginal basins in the South China Sea are not simple traditional units with onshore continental slopes extending toward the deep sea.The marginal basins are known to consist of multi-level structures and distinctive types of basins which differ from the continental regions to the sea.During the Oligocene,the existing luxuriant plants and beneficial conditions assisted in the development of peat.Therefore,the Oligocene was the significant period for the formation and aggregation of the peat.However,the peat did not form in unified sedimentary dynamic fields,but instead displayed multi-level geographical units,multiple provenance areas,instability,and nonevent characteristics.As a result,the marginal basins in the South China Sea are characterized by non-uniform peat aggregation stages.In another words,the majority of the peat had entered the marine system in a dispersive manner and acted as part of the marine deposits,rather than during one or several suitable coal-forming stages.These peat deposits then became the main material source for hydrocarbon generation in all of the marginal basins of the South China Sea.The study will be of much significance for the hydrocarbon exploration in the marginal basins of the South China Sea.展开更多
Regional processes on land-water-air interface carbon(C)budget and balance that interconnect the land and sea are in fact C neutrality critical processes within the earth system.It is therefore essential to quantitati...Regional processes on land-water-air interface carbon(C)budget and balance that interconnect the land and sea are in fact C neutrality critical processes within the earth system.It is therefore essential to quantitatively analyze synergistic landwater-air interface C transport and C exchange processes to gain a deep understanding of the important role that terrestrial ecosystems play in“missing C sink”.This paper systematically analyzes global land-water-air interface C migration processes as well as C budget changes and associated impact mechanisms.It also investigates the important role that these C budgets and C cycling processes play in inland water bodies,respective to C budgets at the land-water-air interface.Moreover,this study reveals the regulatory mechanisms of land-water-air interface C budgets and balances under a background of global climate change.It also quantitatively evaluates the status of China’s regional land-sea-air interface C budgets as well as the C sequestration potential of its lake systems.Finally,this study concludes that the explicit quantification of anthropogenic activity impacts on land-water-air interface C transport and exchange processes is of great significance to global C balances and C neutrality.展开更多
Using NCEP/NCAR and ERA-40 reanalyses,we studied the seasonal cycle of redistribution of air mass between continents and oceans over the Northern Hemisphere.Our results demonstrate that air mass in the Northern Hemisp...Using NCEP/NCAR and ERA-40 reanalyses,we studied the seasonal cycle of redistribution of air mass between continents and oceans over the Northern Hemisphere.Our results demonstrate that air mass in the Northern Hemisphere shifts clearly between continents and oceans when the season cycles.In July,the air mass reaches its lowest over Eurasia and its highest over the Pacific,and the opposite occurs in January.However,a different scenario is observed over the north Atlantic;the accumulated air mass reaches its maximum there in May.The maintenance of the accumulation or loss of air mass in a region is found to be related to the areal mean air mass flux divergence and the difference between precipitation and evaporation in an air column.The zonal-vertical circulations change with season,with the air ascent and decent reversed between land and sea.Besides,there also exists a noticeable difference of water vapor content of the air between continents and oceans,and this difference is season-dependent.Physically,the vapor content is able to significantly affect the atmosphere in absorbing solar short-and earth’s long-wave radiations,hence influencing atmospheric thermal conditions.The land-sea thermal contrasts inclusive of the diabatic heating rate changes their signs with season going on,resulting in the reversal of orientations of the temperature gradient.These thermal forcings not only facilitate the formation of the monsoons but also indirectly induce the seasonal cycle of the air mass exchanging over regions between continents and oceans.展开更多
Currently,China has entered the period of land-sea coordinated planning,yet there are few studies on the interaction between land use intensity and sea eco-security in coastal zones.Therefore,taking the coastal zone o...Currently,China has entered the period of land-sea coordinated planning,yet there are few studies on the interaction between land use intensity and sea eco-security in coastal zones.Therefore,taking the coastal zone of Xiamen as an example,this paper develops a comprehensive system to evaluate the coupling degree between spatial utilization intensity and eco-security based on the coupling degree theory in physics.Then the paper quantitatively analyzes and identifies the coupling coordination degree of various shore sections into four categories:well-coordinated and highly-coupled,moderately-coordinated and moderately-coupled,moderately-coordinated and slightly-coupled,and primary-level coordinated and slightly-coupled.Finally,it puts forward spatial planning guidelines for the four types of shore sections on the basis of land-sea coordination.Specifically,reserved ecological section should follow the principle of giving priority to the marine ecosystem,and strictly protecting the ecosystem and controlling development;ecological promotion section should follow the principle of optimizing land development based on the sea resources,and reserving space for transformation;restricted development section should follow the principle of land-sea balance,and only allowing low-impact development activities to achieve synchronous land-sea development;development leverage section should follow the principle of optimizing marine development based on land resources,giving full play to the advantages of coastal resources and featured coastal space,and achieving spatial optimization in accordance with people-oriented principles and local conditions.This research intends to provide a scientific basis for coastal zone planning and decision-making and a paradigm guide for gulf cities to coordinate the marine ecosystem and land development.展开更多
基金This research was supported by the National Natural Science Foundation of China un-der Grant No.40233033.
文摘The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia. The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However, the opposite interdecadal variation was found in the rainfall anomaly in North China and South China. The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean, which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05130703)the National Natural Science Foundation of China (Grant No. 31461143032)the Key Research Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-14)
文摘Based on multi-temporal topographic maps, remote sensing images and field surveys covering the entire coastal zone of China's Mainland, the coastlines of six periods since the early 1940s were extracted. Coastline changes over the last 70 years were then analyzed in terms of coastline structure, coastline fractals, coastline change rates, land-sea patterns, and bay areas. The results showed that mainland coastline structure changed dramatically, and due to the significant coastline artificialization mainly driven by sea reclamation and coastal engineering, the remaining natural coastline merely accounts for less than one third at present. Coastline fractal dimension represented an overall spatial pattern of "north 〈 entirety 〈 south"; however, the discrepancy between the north and south coast was apparently narrowed due to dramatic coastline artificialization of northern China which in turn altered the whole pattern. Patterns and processes of land-sea interchange along the mainland coast were complex and varied spatially and temporally, with over 68% advancing toward sea and 22% retreating toward land. The net growth of land area was nearly 14.2 ×10^3 km2 with an average growth rate of 202.82 km2 al; and coast retreat was characterized by area decrease of 93 bays with a magnitude of 10.1 ×10^3 km2 and an average shrinking rate up to 18.19% or an average shrinking speed up to 144.20 km2 a-1, among which the total area of Bohai shrunk by 7.06%, with an average annual loss amounting to 82 km2. The dramatic coastline changes along China's Mainland have brought about kinds of challenges to the coastal environment, therefore the integrated management, effective environment protection and sustainable utilization of coastlines is urgent.
基金This research was supported by the National Natural Science Foundation of China(Grant Nos.40475030 and 40225012)
文摘The analysis of 43 years of NCEP-NCAR reanalysis data and station observations reveals the connections between tropospheric temperature variations and the weakening of the Indian summer monsoon circulation. The Indian summer monsoon variation is strongly linked to tropospheric temperature over East Asia, showing significant positive correlations of mean tropospheric temperature with all-Indian summer rainfall and the monsoon circulation
基金Supported by the National Basic Research Program of China(2009CB421406)Special Public Welfare Research Fund for Meteorological Profession of China Meteorological Administration(GYHY200906016)+1 种基金National Science and Technology Support Program of China(2007BAC29B03)National Natural Science Foundation of China(40821092)
文摘Using the US Climate Prediction Center (CPC) soil moisture dataset and the observed precipitation over China together with the NCEP/NCAR reanalysis wind and air temperature, the relationship between June precipitation over mid-lower reaches of the Yangtze River basin (MLR-YRB) and spring soil moisture over the East Asian monsoon region was explored, with the signal of the ENSO effect on precipitation removed. A significant positive correlation was found between the mean June precipitation and the preceding soil moisture over the MRL-YRB. The possible response mechanism for this relationship was also investigated. It is found that when the soil over the MRL-YRB is wetter (drier) than normal in April and May, the air temperature in the lower troposphere over this region in May is lower (higher) than normal, and this temperature effect leads to a decrease (increase) in the temperature contrast between the land and the sea. Generally, a decrease (increase) in the land-sea temperature contrast leads to weaker (stronger) East Asian summer monsoon in June. Southerly (northerly) wind anomalies at 850 hPa then show up in the south of the Yangtze River basin while northerly (southerly) wind anomalies dominate in the north. These anomalies lead to the convergence (divergence) of wind and water vapor and hence gives rise to more (less) precipitation in June over the MLR-YRB.
基金Supported by the South China Sea Monsoon Experiment,Climbing Programme"A"of China.
文摘This paper proposes an index of land-sea thermal difference(ILSTD)that describes its zonal and meridional strength responsible for East Asian monsoon circulation to study its relation to the East Asian monsoon circulation and the summer rainfall over China on an interannual basis.Results are as follows:(1)ILSTD can be used to measure the strength of East Asian summer monsoon in such a way that the strong(weak)ILSTD years are associated with strong(weak)summer monsoon circulation.(2)The index also reflects well summer rainfall anomaly over the eastern part of China. In the strong index years,rain belt is mainly located over the northern China,and serious drought emerges in the Jianghuai valleys and mid-lower reaches of the Changjiang River,along with increase of rainfall in North and South China,but in the weak years it is contrary.(3)Besides,the index has obvious QBO and quasi 4-year oscillations,but the periods and amplitudes have significant changes on an interdecadal basis.
文摘Observations of the South China Sea summer monsoon (SCSSM) demonstrate the different features between the early and late onsets of the monsoon. The determining factor related to the onset and the resultant monsoon rainfall might be the off-equatorial ITCZ besides the land-sea thermal contrast. The northward-propagating cumulus convection over the northern Indian Ocean could enhance the monsoon trough so that the effect of the horizontal advection of moisture and heat is substantially increased, thus westerlies can eventually penetrate and prevail over the South China Sea (SCS) region.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2015CB453202)National Natural Science Foundation of China(41505049,41475057,and 41175083)+2 种基金Basic Research and Operation Fund of the Chinese Academy of Meteorological Sciences(2015Z001)Program for Changjiang Scholars and Innovative Research Team in Universities(PCSIRT)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The East Asian subtropical summer monsoon(EASSM) is one component of the East Asian summer monsoon system,and its evolution determines the weather and climate over East China.In the present paper,we firstly demonstrate the formation and advancement of the EASSM rainbelt and its associated circulation and precipitation patterns through reviewing recent studies and our own analysis based on JRA-55(Japanese 55-yr Reanalysis) data and CMAP(CPC Merged Analysis of Precipitation),GPCP(Global Precipitation Climatology Project),and TRMM(Tropical Rainfall Measuring Mission) precipitation data.The results show that the rainy season of the EASSM starts over the region to the south of the Yangtze River in early April,with the establishment of strong southerly wind in situ.The EASSM rainfall,which is composed of dominant convective and minor stratiform precipitation,is always accompanied by a frontal system and separated from the tropical summer monsoon system.It moves northward following the onset of the South China Sea summer monsoon.Moreover,the role of the land-sea thermal contrast in the formation and maintenance of the EASSM is illustrated,including in particular the effect of the seasonal transition of the zonal land-sea thermal contrast and the influences from the Tibetan Plateau and midlatitudes.In addition,we reveal a possible reason for the subtropical climate difference between East Asia and East America.Finally,the multi-scale variability of the EASSM and its influential factors are summarized to uncover possible reasons for the intraseasonal,interannual,and interdecadal variability of the EASSM and their importance in climate prediction.
基金This research program is supported by the National Natural Science Foundation of China and the Xi'an Laboratory of Loess and Quaternary Geology, Academia Sinica.
文摘Based upon the effect of land-sea interaction on the paleomonsoon variation and the time series of climatic proxy-indicators, the historical Asian monsoon variation over the last 130,000 and 18,000 years has been reconstructed with an emphasis on the basic characteristics of summer monsoon circulation. The monsoon-climatic cycles and associated model of environmental development over the central and eastern China are proposed and the mechanism of paleomonsoon variation of China preliminarily discussed. The variation of East Asian monsoon circulation should be regarded as a regional result of both solar-radiation changes and the global glacial-interglacial cycles. The episodic uplifting of the Qinghai-Xizang Plateau since the late Miocene has to a large extent controlled the forming and evolution of the paleomonsoon circulation of China.
基金supported by National Natural Science Foundation of China (Grant Nos.90711003,40505014,40805035 and 40633018)
文摘Using a monthly precipitation dataset of 160 stations over China and a daily and monthly National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset from 1961 to 2006, we here define an East Asian land-sea atmospheric heat source difference index ILSQD and investigate its relationship to summer rainfall in China and East Asian general circulation. The results show that ILSQD more closely reflects the anomalous variations in summer monsoon phenomena; in the high-index (HI) cases, the strong low-level southerlies over East China and the strong high-level westerlies over middle latitudes indicate an active summer monsoon, and vice versa in the low-index (LI) cases. This index also reflects summer rainfall anomalies over East China; in the HI (LI) cases rainfall increases (decreases) over North China and at the same time decreases (increases) over the mid-lower Yangtze River valley and the southern Yangtze River. Hence, ILSQD can be utilized as a summer monsoon index. There is also remarkable correlation between ILSQD in March and the following summer rainfall over the mid-lower Yangtze River valley. Finally, the Community Atmospheric Model Version 3.1 (CAM3.1) of NCAR is used to run numerical experiments, which verify that the anomalous summer precipitation in simulations is similar to that of diagnosis analysis based on the anomalous summer atmospheric heating forcing. Similarly, the atmospheric heating rate in March can force summer rainfall anomalies in the simulations just as observed in the data.
基金supported by the Strategic Priority Research Program(Grant No.XDA05110203) of the Chinese Academy of Sciencesthe Research Council of Norway through the India-Clim projectthe National Basic Research Program of China(Grant Nos.2012CB955401 and 2010CB951802)
文摘A 600-year integration performed with the Bergen Climate Model and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data were used to investigate the impact of strong tropical volcanic eruptions on the East Asian summer monsoon (EASM) and EASM rainfall.Both the simulation and NCEP/NCAR reanalysis data show a weakening of the EASM in strong eruption years.The model simulation suggests that North and South China experience droughts and the Yangtze-Huaihe River Valley experiences floods during eruption years.In response to strong tropical volcanic eruptions,the meridional air temperature gradient in the upper troposphere is enhanced,which leads to a southward shift and an increase of the East Asian subtropical westerly jet stream (EASWJ).At the same time,the land-sea thermal contrast between the Asian land mass and Northwest Pacific Ocean is weakened.The southward shift and increase of the EASWJ and reduction of the land-sea thermal contrast all contribute to a weakening of the EASM and EASM rainfall anomaly.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2242203,42275006,and 42030604)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011705)the Science and Technology Research Project for Society of Foshan(2120001008761).
文摘As demonstrated in the first part of this study(Part I),wind-shift boundaries routinely form along the west coast of the Pearl River Delta due to the land-sea contrast of a“trumpet”shape coastline in the summer monsoon season.Through multiple numerical simulations,this article(Part II)aims to examine the roles of the trumpet-shaped coastline in the mesovortex genesis during the 1 June 2020 tornadic event.The modeling reproduced two mesovortices that are in close proximity in time and space to the realistic mesovortices.In addition to the modeled mesovortex over the triple point where strong ambient vertical vorticity was located,another mesovortex originated from an enhanced discrete vortex along an airmass boundary via shear instability.On the fine-scale storm morphology,finger-like echoes preceding hook echoes were also reproduced around the triple point.Results from sensitivity experiments suggest that the unique topography plays an essential role in modifying the vorticity budget during the mesovortex formation.While there is a high likelihood of an upcoming storm evolving into a rotating storm over the triple point,the simulation's accuracy is sensitive to the local environmental details and storm dynamics.The strengths of cold pool surges from upstream storms may influence the stretching of low-level vertically oriented vortex and thus the wrap-up of finger-like echoes.These findings suggest that the trumpet-shaped coastline is an important component of mesovortex production during the active monsoon season.It is hoped that this study will increase the situational awareness for forecasters regarding regional non-mesocyclone tornadic environments.
基金National Key Program for Developing Basic Sciences (G1998040900(I)) Natural Natural Science Foundation of China (49975025)
文摘Identification of key SST zones is essential in predicting the weather / climate systems in East Asia. With the SST data by the U.K. Meteorological Office and 40-year geopotential height and wind fields by NCAR / NCEP, the relationship between the East Asian summer monsoon and north Pacific SSTA is studied, which reveals their interactions are of interdecadal variation. Before mid-1970’s, the north Pacific SSTA acts upon the summer monsoon in East Asia through a great circle wavetrain and results in more rainfall in the summer of the northern part of China. After 1976, the SSTA weakens the wavetrain and no longer influences the precipitation in North China due to loosened links with the East Asian summer monsoon. It can be drawn that the key SST zones having potential effects on the weather / climate systems in East Asia do not stay in one particular area of the ocean but rather shift elsewhere as governed by the interdecadal variations of the air-sea interactions. It is hoped that the study would help shed light on the prediction of drought / flood spans in China.
基金supported by the National Natural Science Foundation of China(Grant Nos.41967001&41401238)State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences(Grant No.Y20160001)Science and Technology Project of Guizhou Province(Grant No.Qian Ke He[2017]1209)。
文摘Iron(Fe)is an important element for the terrestrial and marine ecosystems through its biogeochemical cycling on the Earth’s surface.China has a long rice cultivation history,with extensive rice distribution across many types of paddy soils.Paddy soils are the largest anthropogenic wetlands on earth with critical roles in ecosystem functions.The periodic artificial submergence and drainage during paddy soil evolution result in significant changes in soil moisture regime and redox conditions from the natural soils,which facilitate the increase of Fe solubility and mobilization.However,there is a lack of systematic assessment on the magnitude of the migration and loss amount of Fe from paddy soils.In order to quantify the Fe loss and assess the dynamic evolution of Fe in the soils after rice cultivation,seven paddy soil chronosequences derived from different landscapes(bog,plain,terrace)and parent materials(acidic,neutral,calcareous)with cultivation history from 0 to 2,000 yr were studied.Results showed that the rates and trajectories of Fe evolution showed distinct patterns among the studied seven paddy soil chronosequences.However,net losses of Fe from 1 m soil depth occurred at all studied paddy soil chronosequences regardless of the original landscapes and parent materials.Fe in the paddy soils derived from the calcareous lacustrine sediments in the bog area showed a slight accumulation during the initial stage(50 yr)of paddy cultivation,with a loss rate of0.026 kg m^(-2)yr^(-1) during the 50-to 500-yr time period.For the paddy soils developed on the calcareous marine sediments in the plain area,Fe evolution was dominated by the internal movement in soil profiles through coupled reducing-eluviation reactions in the surface horizons and oxidation-illuviation in the subsurface horizons within 1,000 yr of paddy cultivation,with an averaged net loss rate of 0.029 kg m^(-2)yr^(-1) during the 1,000-to 2,000-yr time period of rice cultivation.In contrast,Fe in the paddy soils derived from the acidic and neutral paren
基金the Climate Change Project of China Meteorological Administration under Grant No.CCSF2007-2the National Natural Science Foundation of China under Grant No.40633018.
文摘The seasonal and interannual variations of the thermal contrast between Indo-China Peninsula (ICP) and South China Sea (SCS) were analyzed using the pentad mean NCEP/NCAR reanalysis data during 1958-1998 and the pentad mean outgoing long-wave radiation (OLR) data during 1975-1998, along with the effects of such a thermal contrast on the SCS monsoon onset (SCSMO). It is shown that there exists significant seasonal evolution for such a thermal contrast. The surface temperature of ICP is higher than that of SCS from pentad 3 to pentad 25 due to the sensible heating of the ICP. After pentad 25, such a thermal gradient reverses due to the temperature decrease resulted from the convection and rainfall over the ICP from pentad 22 to pentad 23. Furthermore, the above seasonal evolution of the discussed thermal contrast also demonstrates a remarkable interannual change which plays an important role in the SCSMO. On one hand, the reversion happens prior to (or simultaneously with) the SCSMO each year during 1958- 1998, thus becoming a precondition for the SCSMO. On the other hand, the earlier (later) the date when the surface temperature of ICP becomes higher (lower) than that of the SCS, the later the SCSMO.
基金The National Natural Science Foundation of China under contract Nos 41872172 and 41672096the Major National Science and Technology Projects under contract No.2016ZX05026007-004the Science Foundation of Shandong Province under contract No.ZR2019QD008
文摘In the present study,the coal-rock organic facies of Oligocene Yacheng Formation of the marginal basin in the South China Sea were classified and divided.In addition,through the correlations of the large-scale coal-bearing basins between the epicontinental sea and the South China Sea,it was concluded that the coal forming activities in the South China Sea presented particularity and complexity.Furthermore,the coal forming mechanisms also presented distinctiveness.The marginal basins in the South China Sea consist of several large and complex rift or depression basins,which are distributed at different tectonic positions in the South China Sea.Therefore,the marginal basins in the South China Sea are not simple traditional units with onshore continental slopes extending toward the deep sea.The marginal basins are known to consist of multi-level structures and distinctive types of basins which differ from the continental regions to the sea.During the Oligocene,the existing luxuriant plants and beneficial conditions assisted in the development of peat.Therefore,the Oligocene was the significant period for the formation and aggregation of the peat.However,the peat did not form in unified sedimentary dynamic fields,but instead displayed multi-level geographical units,multiple provenance areas,instability,and nonevent characteristics.As a result,the marginal basins in the South China Sea are characterized by non-uniform peat aggregation stages.In another words,the majority of the peat had entered the marine system in a dispersive manner and acted as part of the marine deposits,rather than during one or several suitable coal-forming stages.These peat deposits then became the main material source for hydrocarbon generation in all of the marginal basins of the South China Sea.The study will be of much significance for the hydrocarbon exploration in the marginal basins of the South China Sea.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.42141015)the National Science Fund for Excellent Young Scholars of China(Grant No.41922003).
文摘Regional processes on land-water-air interface carbon(C)budget and balance that interconnect the land and sea are in fact C neutrality critical processes within the earth system.It is therefore essential to quantitatively analyze synergistic landwater-air interface C transport and C exchange processes to gain a deep understanding of the important role that terrestrial ecosystems play in“missing C sink”.This paper systematically analyzes global land-water-air interface C migration processes as well as C budget changes and associated impact mechanisms.It also investigates the important role that these C budgets and C cycling processes play in inland water bodies,respective to C budgets at the land-water-air interface.Moreover,this study reveals the regulatory mechanisms of land-water-air interface C budgets and balances under a background of global climate change.It also quantitatively evaluates the status of China’s regional land-sea-air interface C budgets as well as the C sequestration potential of its lake systems.Finally,this study concludes that the explicit quantification of anthropogenic activity impacts on land-water-air interface C transport and exchange processes is of great significance to global C balances and C neutrality.
基金supported by the National Natural Science Foundation of China (Grant No. 41175062)the Project of Scientific Creation of Post-Graduates of Jiangsu (Grant No. CXZZ12_0485)the Creative Teams of Jiangsu Qinglan Project
文摘Using NCEP/NCAR and ERA-40 reanalyses,we studied the seasonal cycle of redistribution of air mass between continents and oceans over the Northern Hemisphere.Our results demonstrate that air mass in the Northern Hemisphere shifts clearly between continents and oceans when the season cycles.In July,the air mass reaches its lowest over Eurasia and its highest over the Pacific,and the opposite occurs in January.However,a different scenario is observed over the north Atlantic;the accumulated air mass reaches its maximum there in May.The maintenance of the accumulation or loss of air mass in a region is found to be related to the areal mean air mass flux divergence and the difference between precipitation and evaporation in an air column.The zonal-vertical circulations change with season,with the air ascent and decent reversed between land and sea.Besides,there also exists a noticeable difference of water vapor content of the air between continents and oceans,and this difference is season-dependent.Physically,the vapor content is able to significantly affect the atmosphere in absorbing solar short-and earth’s long-wave radiations,hence influencing atmospheric thermal conditions.The land-sea thermal contrasts inclusive of the diabatic heating rate changes their signs with season going on,resulting in the reversal of orientations of the temperature gradient.These thermal forcings not only facilitate the formation of the monsoons but also indirectly induce the seasonal cycle of the air mass exchanging over regions between continents and oceans.
基金funded by the Youth Program of National Natural Science Foundation of China(51708471).
文摘Currently,China has entered the period of land-sea coordinated planning,yet there are few studies on the interaction between land use intensity and sea eco-security in coastal zones.Therefore,taking the coastal zone of Xiamen as an example,this paper develops a comprehensive system to evaluate the coupling degree between spatial utilization intensity and eco-security based on the coupling degree theory in physics.Then the paper quantitatively analyzes and identifies the coupling coordination degree of various shore sections into four categories:well-coordinated and highly-coupled,moderately-coordinated and moderately-coupled,moderately-coordinated and slightly-coupled,and primary-level coordinated and slightly-coupled.Finally,it puts forward spatial planning guidelines for the four types of shore sections on the basis of land-sea coordination.Specifically,reserved ecological section should follow the principle of giving priority to the marine ecosystem,and strictly protecting the ecosystem and controlling development;ecological promotion section should follow the principle of optimizing land development based on the sea resources,and reserving space for transformation;restricted development section should follow the principle of land-sea balance,and only allowing low-impact development activities to achieve synchronous land-sea development;development leverage section should follow the principle of optimizing marine development based on land resources,giving full play to the advantages of coastal resources and featured coastal space,and achieving spatial optimization in accordance with people-oriented principles and local conditions.This research intends to provide a scientific basis for coastal zone planning and decision-making and a paradigm guide for gulf cities to coordinate the marine ecosystem and land development.