According to the boundary layer observations of three stations (Garze, Damxung and Qamdu) and relevant earth satellite, radiosonde and surface observations during the intensive observational period (IOP) of the second...According to the boundary layer observations of three stations (Garze, Damxung and Qamdu) and relevant earth satellite, radiosonde and surface observations during the intensive observational period (IOP) of the second Tibetan (Qinghai-Xizang) Plateau Experiment of atmospheric science (TIPEX), the land-air physical process and dynamic model on the Tibetan Plateau were comprehensively analyzed in this study. The dynamic characteristics of boundary layer and the rules of turbulent motion on the plateau were illustrated. The characteristics of distributions of wind speed and direction with mutiple-layer structure and deep convective mixed layer on the plateau, the strong buoyancy effect in turbulent motion on the plateau on which the air density is obviously smaller than on the plain, and the Ekman spiral and its dynamic pump effect of the plateau deep boundary layer have been found. The local static distribution of water vapor and the horizontal advection of water vapor in the plateau boundary layer were studied. The abnomal thermodynamic structure on the plateau surface and boundary layer, including the plateau strong radiation phenomenon and strong heating source characteristics of the middle plateau, was also analyzed. The authors synthesized the above dynamic and thermodynamic structures of both surface and boundary layers on the plateau and posed the comprehensive physical model of the turbulence and convective mixture mechanism on the plateau boundary layer. The characteristics of formation, development and movement for convective cloud cluster over the plateau influencing floods in the Yangtze River area of China were studied. The conceptual model of dynamic and thermodynamic structures of turbulent motion and convective plume related to the frequent occurrence of 'pop-corn-like' cloud system is given as well.展开更多
To improve the land surface simulation in the arid and semi-arid areas of northern China, the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the land surfac...To improve the land surface simulation in the arid and semi-arid areas of northern China, the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the land surface model, BATS, through calibration with the multicriteria method. Sensitivity analysis to the parameters in Dunhuang and Tongyu indicates that different parameters need to be calibrated in two sites with different environmental and climate regimes. Comparison of observed sensible heat flux, latent heat flux, and ground surface temperature with the simulated ones shows the simulations with the optimized parameters have been substantially improved. Especially, the holistic simulations with the calibration of the parameter values are much closer to the observations in the arid region (Dunhuang), and the energy partition with the calibrated parameters can also be simulated well in the semi-arid region (Tongyu). Whole results demonstrate that the parameter calibration of the land surface model is important when the model is to be used to investigate the land-air interaction.展开更多
The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000. While ...The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000. While the seasonal variation in sensible heat flux is found to be consistent between station observations and the two reanalysis datasets, both land-air temperatures difference and surface wind speed show remarkable systematic differences. The sensible heat flux displays obvious interdecadal variability that is season-dependent. In the ERA-40 data, the sensible heat flux in spring, fall, and winter shows interdecadal variations that are similar to observations. In the NCEP-NCAR reanalysis data, sensible heat flux variations are inconsistent with and sometimes even opposite to observations. While surface wind speeds from the NCEP-NCAR reanalysis data show interdecadal changes consistent with station observations, variations in land-air temperature difference differ greatly from the observed dataset. In terms of land-air temperature difference and surface wind speed, almost no consistency with observations can be identified in the ERA-40 data, apart from the land-air temperature difference in fall and winter. These inconsistencies pose a major obstacle to the application in climate studies of surface sensible heat flux derived from reanalysis data.展开更多
Authors have studied the transformation processes of cold air over land in East Asia for eight cases which occurred in different months of 1981.First,the surface eddy sensible and latent heat fluxes,and drag coefficie...Authors have studied the transformation processes of cold air over land in East Asia for eight cases which occurred in different months of 1981.First,the surface eddy sensible and latent heat fluxes,and drag coefficient were estimated according to the approach of similarity theory.Then,the apparent heat source,the apparent moisture sink,and solar and long-wave radiative heating(or cooling)were further calculated through the budget method and physical parameterization algorithm.It has been found that the cold air immediately starts the transformation process over land once it moves away from its region of origin.In winter,the degree of transformation of cold air mass gradually intensi- fied as it travelled southeastward;while arriving in the ocean,the cold air mass underwent the most significant transfor- mation process.In summer,the most vigorous transformation of thermal and moisture fields was observed in North China and Mongolian region,with much greater intensity than that in winter.展开更多
The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the sprin...The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the spring sensible heat flux over Northwest China was greater during the period from the late 1970s to the 1990s than during the period from the 1960s to the mid-1970s. The summer sensible heat flux was smaller in the late 1980s through the 1990s than it was in the 1970s through the early 1980s. Both the spring and summer land-air temperature differences over Northwest China displayed an obvious interdecadal increase in the late 1970s. Both the spring and summer surface wind speeds experienced an obvious interdecadal weakening in the late 1970s. The change in the surface wind speed played a more important role in the interdecadal variations in sensible heat flux during the summer, whereas the change in the land-air temperature difference was more important for the interdecadal variations in sensible heat flux in the spring. This difference was related to seasonal changes in the mean land-air temperature difference and the surface wind speed. Further analysis indicated that the increase in the spring land surface temperature in Northwest China was related to an increase in surface net radiation.展开更多
Land cover is one of the most basic input elements of land surface and climate models. Currently, the direct and indirect effects of land cover data on climate and climate change are receiving increasing attentions. I...Land cover is one of the most basic input elements of land surface and climate models. Currently, the direct and indirect effects of land cover data on climate and climate change are receiving increasing attentions. In this study, a high resolution(30 m) global land cover dataset(Globe Land30) produced by Chinese scientists was, for the first time, used in the Beijing Climate Center Climate System Model(BCC_CSM) to assess the influences of land cover dataset on land surface and climate simulations. A two-step strategy was designed to use the Globe Land30 data in the model. First, the Globe Land30 data were merged with other satellite remote sensing and climate datasets to regenerate plant functional type(PFT) data fitted for the BCC_CSM. Second, the up-scaling based on an area-weighted approach was used to aggregate the fine-resolution Globe Land30 land cover type and area percentage with the coarser model grid resolutions globally. The Globe Land30-based and the BCC_CSM-based land cover data had generally consistent spatial distribution features, but there were some differences between them. The simulation results of the different land cover type dataset change experiments showed that effects of the new PFT data were larger than those of the new glaciers and water bodies(lakes and wetlands). The maximum value was attained when dataset of all land cover types were changed. The positive bias of precipitation in the mid-high latitude of the northern hemisphere and the negative bias in the Amazon, as well as the negative bias of air temperature in part of the southern hemisphere, were reduced when the Globe Land30-based data were used in the BCC_CSM atmosphere model. The results suggest that the Globe Land30 data are suitable for use in the BCC_CSM component models and can improve the performance of the land and atmosphere simulations.展开更多
The accumulation of thermal time usually represents the local heat resources to drive crop growth.Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data colle...The accumulation of thermal time usually represents the local heat resources to drive crop growth.Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity.To solve the critical problems of estimating air temperature(T a) and filling in missing pixels due to cloudy and low-quality images in growing degree days(GDDs) calculation from remotely sensed data,a novel spatio-temporal algorithm for T a estimation from Terra and Aqua moderate resolution imaging spectroradiometer(MODIS) data was proposed.This is a preliminary study to calculate heat accumulation,expressed in accumulative growing degree days(AGDDs) above 10 ℃,from reconstructed T a based on MODIS land surface temperature(LST) data.The verification results of maximum T a,minimum T a,GDD,and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels.Overall,MODIS-derived AGDD was slightly underestimated with almost 10% relative error.However,the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper.Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring,agricultural climatic regionalization,and agro-meteorological disaster detection at the regional scale.展开更多
This study uses the CMA (China Meteorological Administration) global land-surface daily air temperature dataset V1.0 (GLSATD V1.0) to analyze long-term changes in extreme temperature events over the Hindu Kush Himalay...This study uses the CMA (China Meteorological Administration) global land-surface daily air temperature dataset V1.0 (GLSATD V1.0) to analyze long-term changes in extreme temperature events over the Hindu Kush Himalaya (HKH) during 1961e2015. Results show there was a significant decrease in the number of extreme cold events (cold nights, cold days, and frost days) but a significant increase in the number of extreme warm events (warm nights, warm days, and summer days) over the entire HKH during 1961e2015. For percentile-based indices, trends of extreme events related to minimum temperature (Tmin) were greater in magnitude than those related to maximum temperature (Tmax). For absolute-value based indices, maximum Tmax, minimum Tmin, and summer days all show increasing trends, while frost days and the diurnal temperature range (DTR) show significant decreasing trends. In addition, there was a decrease in extreme cold events in most parts of east HKH, particularly in Southwest China and the Tibetan Plateau, while there was a general increase in extreme warm events over the entire HKH. Finally, the change in extreme cold events in the HKH appears to be more sensitive to elevation (with cold nights and cold days decreasing with elevation), whereas the change in warm extremes (warm nights, warm days, and maximum Tmax) shows no detectable relationship with elevation. Frost days and minimum Tmin also have a good relationship with elevation, and the trend in frost days decreases with an increase in elevation while the trend in minimum Tmin increases with an increase in elevation.展开更多
There have long been arguments about the impact of urbanization on local meteorological observations. This letter reviews up-to-date studies of the urbanization-related warming in the observed land surface air tempera...There have long been arguments about the impact of urbanization on local meteorological observations. This letter reviews up-to-date studies of the urbanization-related warming in the observed land surface air temperature series in China. Many previous studies have suggested that, over the past few decades, the local warming due to urbanization could have been about 0.1 °C/10 yr, or even larger. However, based on recently developed homogenized temperature records, the estimated urban bias is smaller. Major uncertainties arise from either the data quality or the techniques used to estimate the urbanization effect. A key example is the ‘observationminus-reanalysis' method, which tends to overestimate the urban signal in this region, partly due to systematic bias in the multi-decadal variability of surface air temperature in the reanalysis data. It is expected that improved numerical modeling with high-resolution information regarding the changing land surface in the region will help to further understand and quantify the effect of urbanization in local temperature records.展开更多
The present study documents the variability of surface sensible heat flux over Northwest China using station observations for the period 1961 2000.It is found that the afternoon and nighttime sensible heat flux variat...The present study documents the variability of surface sensible heat flux over Northwest China using station observations for the period 1961 2000.It is found that the afternoon and nighttime sensible heat flux variations are remarkably different.The variability of the instant flux in the afternoon is much larger than in the nighttime.The afternoon and nighttime flux anomalies tend to be opposite.The diurnal and seasonal dependence of sensible heat flux variations is closely related to the diurnal cycle of mean land-air temperature difference.The relationship of sensible heat flux with land-air temperature difference based on the instant value differs from that based on the daily mean.The present study indicates the importance for the models to properly simulate mean land-air temperature difference and its diurnal and seasonal variations in order to capture surface sensible heat flux variability over Northwest China and predicts its plausible impacts on climate.展开更多
The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Pl...The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Plateau(TP).This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes.The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon(YGC)topography on precipitation at the hourly scale.The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area.The GPM-IMERG(Integrated MultisatellitE Retrievals for Global Precipitation Measurement)satellite precipitation data for the YGC region should be calibrated before they are used.The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP.The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC.High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor.展开更多
文摘According to the boundary layer observations of three stations (Garze, Damxung and Qamdu) and relevant earth satellite, radiosonde and surface observations during the intensive observational period (IOP) of the second Tibetan (Qinghai-Xizang) Plateau Experiment of atmospheric science (TIPEX), the land-air physical process and dynamic model on the Tibetan Plateau were comprehensively analyzed in this study. The dynamic characteristics of boundary layer and the rules of turbulent motion on the plateau were illustrated. The characteristics of distributions of wind speed and direction with mutiple-layer structure and deep convective mixed layer on the plateau, the strong buoyancy effect in turbulent motion on the plateau on which the air density is obviously smaller than on the plain, and the Ekman spiral and its dynamic pump effect of the plateau deep boundary layer have been found. The local static distribution of water vapor and the horizontal advection of water vapor in the plateau boundary layer were studied. The abnomal thermodynamic structure on the plateau surface and boundary layer, including the plateau strong radiation phenomenon and strong heating source characteristics of the middle plateau, was also analyzed. The authors synthesized the above dynamic and thermodynamic structures of both surface and boundary layers on the plateau and posed the comprehensive physical model of the turbulence and convective mixture mechanism on the plateau boundary layer. The characteristics of formation, development and movement for convective cloud cluster over the plateau influencing floods in the Yangtze River area of China were studied. The conceptual model of dynamic and thermodynamic structures of turbulent motion and convective plume related to the frequent occurrence of 'pop-corn-like' cloud system is given as well.
基金supported jointlyby the Chinese Academy of Sciences under Grant KZCX2-YW-220the National Basic Research Program of Chinaunder Grant 2009CB421405the National Natural Sci-ence Foundation of China under Grant No.40730952
文摘To improve the land surface simulation in the arid and semi-arid areas of northern China, the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the land surface model, BATS, through calibration with the multicriteria method. Sensitivity analysis to the parameters in Dunhuang and Tongyu indicates that different parameters need to be calibrated in two sites with different environmental and climate regimes. Comparison of observed sensible heat flux, latent heat flux, and ground surface temperature with the simulated ones shows the simulations with the optimized parameters have been substantially improved. Especially, the holistic simulations with the calibration of the parameter values are much closer to the observations in the arid region (Dunhuang), and the energy partition with the calibrated parameters can also be simulated well in the semi-arid region (Tongyu). Whole results demonstrate that the parameter calibration of the land surface model is important when the model is to be used to investigate the land-air interaction.
基金supported by the National Basic Research Program of China(Grant No.2009CB421405)the National Natural Science Foundationof China(Grant Nos.40730952 and 40905027)+1 种基金the Program of Knowledge Innovation for the 3rd period of Chinese Academy of Sciences(Grant No.KZCX2-YW-220)IAP07414
文摘The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000. While the seasonal variation in sensible heat flux is found to be consistent between station observations and the two reanalysis datasets, both land-air temperatures difference and surface wind speed show remarkable systematic differences. The sensible heat flux displays obvious interdecadal variability that is season-dependent. In the ERA-40 data, the sensible heat flux in spring, fall, and winter shows interdecadal variations that are similar to observations. In the NCEP-NCAR reanalysis data, sensible heat flux variations are inconsistent with and sometimes even opposite to observations. While surface wind speeds from the NCEP-NCAR reanalysis data show interdecadal changes consistent with station observations, variations in land-air temperature difference differ greatly from the observed dataset. In terms of land-air temperature difference and surface wind speed, almost no consistency with observations can be identified in the ERA-40 data, apart from the land-air temperature difference in fall and winter. These inconsistencies pose a major obstacle to the application in climate studies of surface sensible heat flux derived from reanalysis data.
文摘Authors have studied the transformation processes of cold air over land in East Asia for eight cases which occurred in different months of 1981.First,the surface eddy sensible and latent heat fluxes,and drag coefficient were estimated according to the approach of similarity theory.Then,the apparent heat source,the apparent moisture sink,and solar and long-wave radiative heating(or cooling)were further calculated through the budget method and physical parameterization algorithm.It has been found that the cold air immediately starts the transformation process over land once it moves away from its region of origin.In winter,the degree of transformation of cold air mass gradually intensi- fied as it travelled southeastward;while arriving in the ocean,the cold air mass underwent the most significant transfor- mation process.In summer,the most vigorous transformation of thermal and moisture fields was observed in North China and Mongolian region,with much greater intensity than that in winter.
基金supported by the National Natural Science Foundation of China (Grant No. 40730952)the National Basic Research Program of China (Grant No. 2009CB421405)the Program of Knowledge Innovation for the third period, the Chinese Academy of Sciences (Grant No. KZCX2-YW-220), and IAP07414
文摘The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the spring sensible heat flux over Northwest China was greater during the period from the late 1970s to the 1990s than during the period from the 1960s to the mid-1970s. The summer sensible heat flux was smaller in the late 1980s through the 1990s than it was in the 1970s through the early 1980s. Both the spring and summer land-air temperature differences over Northwest China displayed an obvious interdecadal increase in the late 1970s. Both the spring and summer surface wind speeds experienced an obvious interdecadal weakening in the late 1970s. The change in the surface wind speed played a more important role in the interdecadal variations in sensible heat flux during the summer, whereas the change in the land-air temperature difference was more important for the interdecadal variations in sensible heat flux in the spring. This difference was related to seasonal changes in the mean land-air temperature difference and the surface wind speed. Further analysis indicated that the increase in the spring land surface temperature in Northwest China was related to an increase in surface net radiation.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2009AA122005)the Public Welfare Meteorology Research Project of China (Grant Nos. 201506023, 201306048)the National Natural Science Foundation of China (Grant Nos. 41275076, 40905046)
文摘Land cover is one of the most basic input elements of land surface and climate models. Currently, the direct and indirect effects of land cover data on climate and climate change are receiving increasing attentions. In this study, a high resolution(30 m) global land cover dataset(Globe Land30) produced by Chinese scientists was, for the first time, used in the Beijing Climate Center Climate System Model(BCC_CSM) to assess the influences of land cover dataset on land surface and climate simulations. A two-step strategy was designed to use the Globe Land30 data in the model. First, the Globe Land30 data were merged with other satellite remote sensing and climate datasets to regenerate plant functional type(PFT) data fitted for the BCC_CSM. Second, the up-scaling based on an area-weighted approach was used to aggregate the fine-resolution Globe Land30 land cover type and area percentage with the coarser model grid resolutions globally. The Globe Land30-based and the BCC_CSM-based land cover data had generally consistent spatial distribution features, but there were some differences between them. The simulation results of the different land cover type dataset change experiments showed that effects of the new PFT data were larger than those of the new glaciers and water bodies(lakes and wetlands). The maximum value was attained when dataset of all land cover types were changed. The positive bias of precipitation in the mid-high latitude of the northern hemisphere and the negative bias in the Amazon, as well as the negative bias of air temperature in part of the southern hemisphere, were reduced when the Globe Land30-based data were used in the BCC_CSM atmosphere model. The results suggest that the Globe Land30 data are suitable for use in the BCC_CSM component models and can improve the performance of the land and atmosphere simulations.
基金Project supported by the National Key Technology R&D Program of China (No. 2012BAH29B02)the PhD Programs Foundation of Ministry of Education of China (No. 200100101110035)
文摘The accumulation of thermal time usually represents the local heat resources to drive crop growth.Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity.To solve the critical problems of estimating air temperature(T a) and filling in missing pixels due to cloudy and low-quality images in growing degree days(GDDs) calculation from remotely sensed data,a novel spatio-temporal algorithm for T a estimation from Terra and Aqua moderate resolution imaging spectroradiometer(MODIS) data was proposed.This is a preliminary study to calculate heat accumulation,expressed in accumulative growing degree days(AGDDs) above 10 ℃,from reconstructed T a based on MODIS land surface temperature(LST) data.The verification results of maximum T a,minimum T a,GDD,and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels.Overall,MODIS-derived AGDD was slightly underestimated with almost 10% relative error.However,the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper.Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring,agricultural climatic regionalization,and agro-meteorological disaster detection at the regional scale.
文摘This study uses the CMA (China Meteorological Administration) global land-surface daily air temperature dataset V1.0 (GLSATD V1.0) to analyze long-term changes in extreme temperature events over the Hindu Kush Himalaya (HKH) during 1961e2015. Results show there was a significant decrease in the number of extreme cold events (cold nights, cold days, and frost days) but a significant increase in the number of extreme warm events (warm nights, warm days, and summer days) over the entire HKH during 1961e2015. For percentile-based indices, trends of extreme events related to minimum temperature (Tmin) were greater in magnitude than those related to maximum temperature (Tmax). For absolute-value based indices, maximum Tmax, minimum Tmin, and summer days all show increasing trends, while frost days and the diurnal temperature range (DTR) show significant decreasing trends. In addition, there was a decrease in extreme cold events in most parts of east HKH, particularly in Southwest China and the Tibetan Plateau, while there was a general increase in extreme warm events over the entire HKH. Finally, the change in extreme cold events in the HKH appears to be more sensitive to elevation (with cold nights and cold days decreasing with elevation), whereas the change in warm extremes (warm nights, warm days, and maximum Tmax) shows no detectable relationship with elevation. Frost days and minimum Tmin also have a good relationship with elevation, and the trend in frost days decreases with an increase in elevation while the trend in minimum Tmin increases with an increase in elevation.
基金supported by the National Natural Science Foundation of China[grant number 41475078]Strategic Priority Research Program–Climate Change:Carbon Budget and Relevant Issues of the Chinese Academy of Sciences[grant number XDA05090105]
文摘There have long been arguments about the impact of urbanization on local meteorological observations. This letter reviews up-to-date studies of the urbanization-related warming in the observed land surface air temperature series in China. Many previous studies have suggested that, over the past few decades, the local warming due to urbanization could have been about 0.1 °C/10 yr, or even larger. However, based on recently developed homogenized temperature records, the estimated urban bias is smaller. Major uncertainties arise from either the data quality or the techniques used to estimate the urbanization effect. A key example is the ‘observationminus-reanalysis' method, which tends to overestimate the urban signal in this region, partly due to systematic bias in the multi-decadal variability of surface air temperature in the reanalysis data. It is expected that improved numerical modeling with high-resolution information regarding the changing land surface in the region will help to further understand and quantify the effect of urbanization in local temperature records.
基金supported by the National Basic Research Program of China (Grant No. 2009CB421405)the National Natural Science Foundation of China (Grant Nos.40905027 and 40730952)Program of Knowledge Innovationfor the 3rd period of Chinese Academy of Sciences (Grant No.KZCX2-YW-220)
文摘The present study documents the variability of surface sensible heat flux over Northwest China using station observations for the period 1961 2000.It is found that the afternoon and nighttime sensible heat flux variations are remarkably different.The variability of the instant flux in the afternoon is much larger than in the nighttime.The afternoon and nighttime flux anomalies tend to be opposite.The diurnal and seasonal dependence of sensible heat flux variations is closely related to the diurnal cycle of mean land-air temperature difference.The relationship of sensible heat flux with land-air temperature difference based on the instant value differs from that based on the daily mean.The present study indicates the importance for the models to properly simulate mean land-air temperature difference and its diurnal and seasonal variations in order to capture surface sensible heat flux variability over Northwest China and predicts its plausible impacts on climate.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research Program[grant numbers 2019QZKK0105 and 2019QZKK0103]the National Natural Science Foundation of China[grant number 41975009].
文摘The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Plateau(TP).This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes.The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon(YGC)topography on precipitation at the hourly scale.The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area.The GPM-IMERG(Integrated MultisatellitE Retrievals for Global Precipitation Measurement)satellite precipitation data for the YGC region should be calibrated before they are used.The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP.The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC.High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor.