期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
日光温室夜间空气自然对流边界层的确定及量化分析 被引量:1
1
作者 张传坤 魏珉 +4 位作者 徐平丽 杨宁 刘波 王晓 孔祥华 《山东农业科学》 2020年第5期31-38,共8页
为研究塑料薄膜覆盖日光温室夜间的保温原理,运用自然对流边界层理论对日光温室夜间垂直方向上的温差分布进行研究。结果表明:①试验温室地面以上0.10 m内、薄膜内侧0.10 m内温差积分占垂直方向上总温差积分的比例分别为45.55%、34.54%... 为研究塑料薄膜覆盖日光温室夜间的保温原理,运用自然对流边界层理论对日光温室夜间垂直方向上的温差分布进行研究。结果表明:①试验温室地面以上0.10 m内、薄膜内侧0.10 m内温差积分占垂直方向上总温差积分的比例分别为45.55%、34.54%;地面以上0.10 m处与薄膜内侧0.10 m处之间的距离为4.98 m,其温差积分占总温差积分的比例为19.91%。②试验温室地面和薄膜内侧存在速度边界层,夜间速度边界层瑞利数(Ra)为1.66×10^10~3.50×10^10,为湍流边界层。③日光温室除去受到覆盖物的保温因素外,内部空气自然对流也产生层流底层,增大了传热热阻,从而实现保温作用。④多膜覆盖、双层膜、内保温等栽培设施将空气分割成不同的空间,空气在不同的空间内分别进行自然对流,在增加的膜的两侧分别产生层流底层,保温效果优于单层膜保温效果,但保温效果的增幅随膜层数增加而降低。⑤试验期间温室地面、薄膜内侧湍流边界层厚度范围为0.13~0.14 m、层流底层厚度范围为5.01×10^-3~5.90×10^-3 m,薄膜内侧层流底层对温室的保温作用为0.70~1.49℃。 展开更多
关键词 日光温室 塑料薄膜 自然对流 边界层 湍流边界层 层流底层
下载PDF
Simulation of Random Waves and Associated Laminar Bottom Shear Stresses
2
作者 Ching-Jer HUANG 《China Ocean Engineering》 SCIE EI 2008年第3期477-490,共14页
This work presents a new approach for simulating the random waves in viscous fluids and the associated bottom shear stresses. By generating the incident random waves in a numerical wave flume and solving the unsteady ... This work presents a new approach for simulating the random waves in viscous fluids and the associated bottom shear stresses. By generating the incident random waves in a numerical wave flume and solving the unsteady two-dimensional Navier-Stokes equations and the fully nonlinear free surface boundaiy conditions for the fluid flows in the flume, the viscous flows and laminar bottom shear stresses induced by random waves axe determined. The deterministic spectral amplitude method implemented by use of the fast Fourier transform algorithm was adopted to generate the incident random waves. The accuracy of the numerical scheme is confirmed by comparing the predicted wave spectrum with the target spectrum and by comparing the nanlerical transfer function between the shear stress and the surface elevation with the theoretical transfer function. The maximum bottom shear stress caused by random waves, computed by this wave model, is compared with that obtained by Myrhaug' s model (1995). The transfer function method is also employed to determine the maximum shear stress, and is proved accurate. 展开更多
关键词 random waves laminar bottom shear stresses SPECTRA Coda- JONSWAP spectral density transfer function Navier-Stokes equations boundary-layer flows
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部