Qinghai Lake and Zhuye Lake, -400 km apart, are located in the northwest margin of the Asian summer monsoon. Water of these two lakes mostly comes from the middle and eastern parts of the Qilian Mountains. Previous st...Qinghai Lake and Zhuye Lake, -400 km apart, are located in the northwest margin of the Asian summer monsoon. Water of these two lakes mostly comes from the middle and eastern parts of the Qilian Mountains. Previous studies show that the Holocene climate changes of the two lakes implied from lake records are different. Whether lake evaporation plays a role in asynchronous Holocene climate changes is important to understand the lake records. In this paper, we used modern observations beside Qinghai Lake and Zhuye Lake to test the impact factors for lake evaporation. Pan evaporation near the two lakes is mainly related to relative humidity, temperature, vapor pressure and sunshine duration. But tem- perature has different impacts to lake evaporation of the two lakes, which can affect Holocene millennial-scale lake level changes. In addition, differences in relative humidity on the millen- nial-scale would be more significant, which also can contribute to asynchronous lake records.展开更多
Establishing satisfactory calculation methods of lake evaporation has been crucial for research and manage-ment of water resources and ecosystems. A 30 year dataset from Dickie Lake, south-central Ontario, Canada adde...Establishing satisfactory calculation methods of lake evaporation has been crucial for research and manage-ment of water resources and ecosystems. A 30 year dataset from Dickie Lake, south-central Ontario, Canada added to the limited long-term studies on lake evaporation. Evaporation during ice-free season was calcu-lated separately using seven evaporation methods, based on field meteorology, hydrology and lake water temperature data. Actual evaporation determined during a portion of a year was estimated using a lake en-ergy budget model, and the estimation was used as reference evaporation for evaluation of the seven methods. The deviation of method-induced evaporation from the reference evaporation was compared among the seven methods, and a performance rank was proposed based on the root mean squared deviation and coeffi-cient of efficiency. As for the whole ice-free season (roughly May to November), the water balance was the best method, followed by Makkink, DeBruin-Kejiman, Penman, Priestley-Taylor, Hamon, and Jensen-Haise methods. As for shorter duration (a week to a month), the DeBruin-Kejiman was the best method, followed by Penman, Priestley-Taylor, Makkink, Hamon, Jensen-Haise, and water balance method. Annual and sea-sonal changes of energy budget terms and the compensation function of lake heat storage in evaporation flux were also analyzed.展开更多
基金National Natural'Science Foundation of China, No.41001116
文摘Qinghai Lake and Zhuye Lake, -400 km apart, are located in the northwest margin of the Asian summer monsoon. Water of these two lakes mostly comes from the middle and eastern parts of the Qilian Mountains. Previous studies show that the Holocene climate changes of the two lakes implied from lake records are different. Whether lake evaporation plays a role in asynchronous Holocene climate changes is important to understand the lake records. In this paper, we used modern observations beside Qinghai Lake and Zhuye Lake to test the impact factors for lake evaporation. Pan evaporation near the two lakes is mainly related to relative humidity, temperature, vapor pressure and sunshine duration. But tem- perature has different impacts to lake evaporation of the two lakes, which can affect Holocene millennial-scale lake level changes. In addition, differences in relative humidity on the millen- nial-scale would be more significant, which also can contribute to asynchronous lake records.
文摘Establishing satisfactory calculation methods of lake evaporation has been crucial for research and manage-ment of water resources and ecosystems. A 30 year dataset from Dickie Lake, south-central Ontario, Canada added to the limited long-term studies on lake evaporation. Evaporation during ice-free season was calcu-lated separately using seven evaporation methods, based on field meteorology, hydrology and lake water temperature data. Actual evaporation determined during a portion of a year was estimated using a lake en-ergy budget model, and the estimation was used as reference evaporation for evaluation of the seven methods. The deviation of method-induced evaporation from the reference evaporation was compared among the seven methods, and a performance rank was proposed based on the root mean squared deviation and coeffi-cient of efficiency. As for the whole ice-free season (roughly May to November), the water balance was the best method, followed by Makkink, DeBruin-Kejiman, Penman, Priestley-Taylor, Hamon, and Jensen-Haise methods. As for shorter duration (a week to a month), the DeBruin-Kejiman was the best method, followed by Penman, Priestley-Taylor, Makkink, Hamon, Jensen-Haise, and water balance method. Annual and sea-sonal changes of energy budget terms and the compensation function of lake heat storage in evaporation flux were also analyzed.