The Laguerre Gauss-Radau interpolation is investigated. Some approximation results are obtained. As an example, the Laguerre pseudospectral scheme is constructed for the BBM equation. The stability and the convergence...The Laguerre Gauss-Radau interpolation is investigated. Some approximation results are obtained. As an example, the Laguerre pseudospectral scheme is constructed for the BBM equation. The stability and the convergence of proposed scheme are proved. The numerical results show the high accuracy of this approach.展开更多
Dirac's ket-bra formalism is the language of quantum mechanics.We have reviewed how to apply Newton-Leibniz integration rules to Dirac's ket-bra projectors in previous work.In this work,by alternately using th...Dirac's ket-bra formalism is the language of quantum mechanics.We have reviewed how to apply Newton-Leibniz integration rules to Dirac's ket-bra projectors in previous work.In this work,by alternately using the technique of integration within normal,antinormal,and Weyl ordering of operators we not only derive some new operator ordering identities,but also deduce some new integration formulas regarding Laguerre and Hermite polynomials.This may open a new route of directly deriving some complicated mathematical integration formulas by virtue of the quantum mechanical operator ordering technique,without really performing the integrations in the ordinary way.展开更多
Let x:M → Rn be an umbilical free hypersurface with non-zero principal curvatures.Then x is associated with a Laguerre metric g,a Laguerre tensor L,a Laguerre form C,and a Laguerre second fundamental form B,which are...Let x:M → Rn be an umbilical free hypersurface with non-zero principal curvatures.Then x is associated with a Laguerre metric g,a Laguerre tensor L,a Laguerre form C,and a Laguerre second fundamental form B,which are invariants of x under Laguerre transformation group.An eigenvalue of Laguerre tensor L of x is called a Laguerre eigenvalue of x.In this paper,we classify all oriented hypersurfaces with constant Laguerre eigenvalues and vanishing Laguerre form.展开更多
The author considers the largest eigenvaiues of random matrices from Gaussian unitary ensemble and Laguerre unitary ensemble, and the rightmost charge in certain random growth models. We obtain some precise asymptotic...The author considers the largest eigenvaiues of random matrices from Gaussian unitary ensemble and Laguerre unitary ensemble, and the rightmost charge in certain random growth models. We obtain some precise asymptotics results, which are in a sense similar to the precise asymptotics for sums of independent random variables in the context of the law of large numbers and complete convergence. Our proofs depend heavily upon the upper and lower tail estimates for random matrices and random growth models. The Tracy-Widom distribution plays a central role as well.展开更多
In this note, we compute the fundamental solution for the Hermite operator with singularity at an arbitrary point y∈R^n. We also apply this result to obtain the fundamental solutions for the Grushin operator in R^2 a...In this note, we compute the fundamental solution for the Hermite operator with singularity at an arbitrary point y∈R^n. We also apply this result to obtain the fundamental solutions for the Grushin operator in R^2 and the sub-Laplacian in the Heisenberg group Hn.展开更多
This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an...This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an efficient procedure based on the modified Adomian decomposition method to obtain closed-form solutions of the Laguerre’s and the associated Laguerre’s differential equations. The proposed technique makes sense as the attitudes of the acquired solutions towards the neighboring singular points are correctly taken care of.展开更多
Let f : M → R3 be an oriented surface with non-degenerate second fundamental form. We denote by H and K its mean curvature and Gauss curvature. Then the Laguerre volume of f, defined by L(f) = f(H2 - K)/KdM, is ...Let f : M → R3 be an oriented surface with non-degenerate second fundamental form. We denote by H and K its mean curvature and Gauss curvature. Then the Laguerre volume of f, defined by L(f) = f(H2 - K)/KdM, is an invariant under the Laguerre transformations. The critical surfaces of the functional L are called Laguerre minimal surfaces. In this paper we study the Laguerre minimal surfaces in R^3 by using the Laguerre Gauss map. It is known that a generic Laguerre minimal surface has a dual Laguerre minimal surface with the same Gauss map. In this paper we show that any surface which is not Laguerre minimal is uniquely determined by its Laguerre Gauss map. We show also that round spheres are the only compact Laguerre minimal surfaces in R^3. And we give a classification theorem of surfaces in R^3 with vanishing Laguerre form.展开更多
This paper deals with Wiener model based predictive control of a pH neutralization process.The dynamic linear block of the Wiener model is parameterized using Laguerre filters while the nonlinear block is constructed ...This paper deals with Wiener model based predictive control of a pH neutralization process.The dynamic linear block of the Wiener model is parameterized using Laguerre filters while the nonlinear block is constructed using least squares support vector machines (LSSVM).Input-output data from the first principle model of the pH neutralization process are used for the Wiener model identification.Simulation results show that the proposed Wiener model has higher prediction accuracy than Laguerre-support vector regression (SVR) Wiener models,Laguerre-polynomial Wiener models,and linear Laguerre models.The identified Wiener model is used here for nonlinear model predictive control (NMPC) of the pH neutralization process.The set-point tracking performance of the proposed NMPC is compared with those of the Laguerre-SVR Wiener model based NMPC,Laguerre-polynomial Wiener model based NMPC,and linear model predictive control (LMPC).Validation results show that the proposed NMPC outperforms the other three controllers.展开更多
Let x : M → R n be an umbilical free hypersurface with non-zero principal curvatures, then x is associated with a Laguerre metric g, a Laguerre tensor L, a Laguerre form C, a Laguerre second fundamental form B, which...Let x : M → R n be an umbilical free hypersurface with non-zero principal curvatures, then x is associated with a Laguerre metric g, a Laguerre tensor L, a Laguerre form C, a Laguerre second fundamental form B, which are invariants of x under Laguerre transformation group. A classical theorem of Laguerre geometry states that M(n > 3) is characterized by g and B up to Laguerre equivalence. A Laguerre isopararmetric hypersurface is defined by satisfying the conditions that C = 0 and all the eigenvalues of B with respect to g are constant. It is easy to see that all Laguerre isopararmetric hypersurfaces are Dupin hypersurfaces. In this paper, we established a complete classification for all Laguerre isopararmetric hypersurfaces with three distinct principal curvatures in R7.展开更多
By virtue of the coherent state representation and the operator ordering method we find a new approach for transiting Hermite polynomials to Laguerre polynomials. We also derive the new reciprocal relation of Laguerre...By virtue of the coherent state representation and the operator ordering method we find a new approach for transiting Hermite polynomials to Laguerre polynomials. We also derive the new reciprocal relation of Laguerre polynomials ∑n=0 (-1)n (n^l)Ln (x) = x^l/n, n-O and its application in deriving the sum rule of the Wingner function of Fock states is demonstrated. Some new expansion identities about the operator Laguerre polynomial are also derived. This opens a new route of deriving mathematical polynomials formulas by virtute of the quantum mechanical representations and operator ordering technique.展开更多
Laguerre calculus is a powerful tool for harmonic analysis on the Heisenberg group. Many sub-elliptic partial differential operators can be inverted by Laguerre calculus. In this article, we use Laguerre calculus to f...Laguerre calculus is a powerful tool for harmonic analysis on the Heisenberg group. Many sub-elliptic partial differential operators can be inverted by Laguerre calculus. In this article, we use Laguerre calculus to find explicit kernels of the fundamental solution for the Paneitz operator and its heat equation. The Paneitz operator which plays an important role in CR geometry can be written as follows: $$ {\mathcal{P}_\alpha} = {\mathcal{L}_\alpha} \bar {\mathcal{L}_\alpha} = \frac{1} {4}\left[ {\sum\limits_{j = 1}^n {\left( {Z_j \bar Z_j + \bar Z_j Z_j } \right)} } \right]^2 + \alpha ^2 T^2 $$ Here “Z j ” j=1 n is an orthonormal basis for the subbundle T (1,0) of the complex tangent bundle T ?(H n ) and T is the “missing direction”. The operator $ \mathcal{L}_\alpha $ is the sub-Laplacian on the Heisenberg group which is sub-elliptic if α does not belong to an exceptional set Λ α . We also construct projection operators and relative fundamental solution for the operator $ \mathcal{L}_\alpha $ while α ∈ Λ α .展开更多
In this paper, we review some results on the spectral methods. We first consider the Jacobi spectral method and the generalized Jacobi spectral method for various problems, including degenerated and singular different...In this paper, we review some results on the spectral methods. We first consider the Jacobi spectral method and the generalized Jacobi spectral method for various problems, including degenerated and singular differential equations. Then we present the generalized Jacobi quasi-orthogonal approximation and its applica- tions to the spectral element methods for high order problems with mixed inhomogeneous boundary conditions. We also discuss the related spectral methods for non-rectangular domains and the irrational spectral methods for unbounded domains. Next, we consider the Hermite spectral method and the generalized Hermite spec- tral method with their applications. Finally, we consider the Laguerre spectral method and the generalized Laguerre spectral method for many problems defined on unbounded domains. We also present the generalized Laguerre quasi-orthogonal approximation and its applications to certain problems of non-standard type and exterior problems.展开更多
Laguerre geometry of surfaces in R^3 is given in the book of Blaschke, and has been studied by Musso and Nicolodi, Palmer, Li and Wang and other authors. In this paper we study Laguerre minimal surface in 3-dimensiona...Laguerre geometry of surfaces in R^3 is given in the book of Blaschke, and has been studied by Musso and Nicolodi, Palmer, Li and Wang and other authors. In this paper we study Laguerre minimal surface in 3-dimensional Euclidean space R^3. We show that any Laguerre minimal surface in R^3 can be constructed by using at most two holomorphic functions. We show also that any Laguerre minimal surface in R^3 with constant Laguerre curvature is Laguerre equivalent to a surface with vanishing mean curvature in the 3-dimensional degenerate space R0^3.展开更多
Simulation method was designed to divide Laguerre diagram for right circle group with different weight; out-of-core incremental algorithm for Laguerre diagram was constructed; simulation program development and visual...Simulation method was designed to divide Laguerre diagram for right circle group with different weight; out-of-core incremental algorithm for Laguerre diagram was constructed; simulation program development and visualization was done and simulation was realized in user-specified arbitrary area for simulation of metal materials microstructure, which facilitated the practical application and secondary development of Laguerre diagram in the field of material science engineering. Finally, the utilization of a developed software package exemplified the simulation application of microstructure about metal materials and proved its validity.展开更多
Based on angular spectrum expansion and 4 × 4 matrix theory, the reflection and transmission characteristics of a Laguerre Gaussian (LG) beam from uniaxial anisotropic multilayered media are studied. The reflec...Based on angular spectrum expansion and 4 × 4 matrix theory, the reflection and transmission characteristics of a Laguerre Gaussian (LG) beam from uniaxial anisotropic multilayered media are studied. The reflected and transmitted beam fields of an LG beam are derived. In the case where the principal coordinates of the uniaxial anisotropic media coincide with the global coordinates, the reflected and transmitted beam intensities from a uniaxial anisotropic slab and three-layered media are numerically simulated. It is shown that the reflected intensity components of the incident beam, especially the TM polarized incident beam, are smaller than the transmitted intensity components. The distortion of the reflected intensity component is more evident than that of the transmitted intensity component. The distortion of intensity distribution is greatly affected by the dielectric tensor and the thickness of anisotropic media. We finally extend the application of the method to general anisotropic multilayered media.展开更多
An umbilical free oriented hypersurfacex:M→Rnwith non-zero principal curvatures is called a Laguerre isoparametric hypersurface if its Laguerre form C=i Ciωi=iρ1(Ei(logρ)(r ri)Ei(r))ωi vanishes and Lague...An umbilical free oriented hypersurfacex:M→Rnwith non-zero principal curvatures is called a Laguerre isoparametric hypersurface if its Laguerre form C=i Ciωi=iρ1(Ei(logρ)(r ri)Ei(r))ωi vanishes and Laguerre shape operator S=ρ1(S 1 rid)has constant eigenvalues.Hereρ=i(r ri)2,r=r1+r2+···+rn 1n 1is the mean curvature radius andSis the shape operator ofx.{Ei}is a local basis for Laguerre metric g=ρ2III with dual basis{ωi}and III is the third fundamental form ofx.In this paper,we classify all Laguerre isoparametric hypersurfaces in Rn(n〉3)with two distinct non-zero principal curvatures up to Laguerre transformations.展开更多
In this paper spectral Galerkin approximation of optimal control problem governed by fractional elliptic equation is investigated.To deal with the nonlocality of fractional Laplacian operator the Caffarelli-Silvestre ...In this paper spectral Galerkin approximation of optimal control problem governed by fractional elliptic equation is investigated.To deal with the nonlocality of fractional Laplacian operator the Caffarelli-Silvestre extension is utilized.The first order optimality condition of the extended optimal control problem is derived.A spectral Galerkin discrete scheme for the extended problem based on weighted Laguerre polynomials is developed.A priori error estimates for the spectral Galerkin discrete scheme is proved.Numerical experiments are presented to show the effectiveness of our methods and to verify the theoretical findings.展开更多
The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimen...The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimensional(2D)nonorthogonal associated Laguerre basis set. The 2D quantum confinement effect together with the strongly reduced dielectric screening results in the strong attractive Coulomb potential between electron and donor ion, with exceptionally large impurity binding energy and huge intersubband oscillator strength. These lead to the strong interaction of the electron with light in a 2D regime. The intersubband optical absorption spectra exhibit strong absorption lines of the non-hydrogenic Rydberg series in the mid-infrared range of light. The strength of the Coulomb potential can be controlled by changing the dielectric environment. The electron affinity difference leads to charge transfer between ML TMD and the dielectric environment, generating the polarization-electric field in ML TMD accompanied by weakening the Coulomb interaction strength. The larger the dielectric constant of the dielectric environment, the more the charge transfer is, accompanied by the larger polarization-electric field and the stronger dielectric screening. The dielectric environment is shown to provide an efficient tool to tune the wavelength and output of the mid-infrared intersubband devices based on ML TMDs.展开更多
Let x : M^n-1→ R^n be an umbilical free hypersurface with non-zero principal curvatures. Two basic invariants of M under the Laguerre transformation group of Rn are Laguerre form C and Laguerre tensor L. In this pap...Let x : M^n-1→ R^n be an umbilical free hypersurface with non-zero principal curvatures. Two basic invariants of M under the Laguerre transformation group of Rn are Laguerre form C and Laguerre tensor L. In this paper, we prove the following theorem: Let M be an (n-1)-dimensional (n 〉 3) complete hypersurface with vanishing Laguerre form and with constant Laguerre scalar curvature R in R^n, denote the trace-free Laguerre tensor by L = L -1/n-1tr(L)· Id. If supM ||L||=0,then M is Laguerre equivalent to a Laguerre isotropic hypersurface; and if supM ||L^-||≡√(n-1)(n-2)R/ (n-1)(n-2)(n-3) , M isLaguerre equivalent to the hypersurface x^- : H^1× S^n-2 → R^n.展开更多
基金The work of the second author is partially supported by The Special Funds for Major State Basic Research Projects of China N.G1999032804 Shanghai Natural Science Foundation N.00JC14057.
文摘The Laguerre Gauss-Radau interpolation is investigated. Some approximation results are obtained. As an example, the Laguerre pseudospectral scheme is constructed for the BBM equation. The stability and the convergence of proposed scheme are proved. The numerical results show the high accuracy of this approach.
基金supported by the National Natural Science Foundation of China (Grant Nos 10775097 and 10874174)the Special Funds of theNational Natural Science Foundation of China (Grant No 10947017/A05)
文摘Dirac's ket-bra formalism is the language of quantum mechanics.We have reviewed how to apply Newton-Leibniz integration rules to Dirac's ket-bra projectors in previous work.In this work,by alternately using the technique of integration within normal,antinormal,and Weyl ordering of operators we not only derive some new operator ordering identities,but also deduce some new integration formulas regarding Laguerre and Hermite polynomials.This may open a new route of directly deriving some complicated mathematical integration formulas by virtue of the quantum mechanical operator ordering technique,without really performing the integrations in the ordinary way.
基金supported by National Natural Science Foundation of China (Grant Nos.10801006,10971110,10771005)
文摘Let x:M → Rn be an umbilical free hypersurface with non-zero principal curvatures.Then x is associated with a Laguerre metric g,a Laguerre tensor L,a Laguerre form C,and a Laguerre second fundamental form B,which are invariants of x under Laguerre transformation group.An eigenvalue of Laguerre tensor L of x is called a Laguerre eigenvalue of x.In this paper,we classify all oriented hypersurfaces with constant Laguerre eigenvalues and vanishing Laguerre form.
基金NSF of China (No.10371109,10671176)the Royal Society K.C.Wong Education Foundation
文摘The author considers the largest eigenvaiues of random matrices from Gaussian unitary ensemble and Laguerre unitary ensemble, and the rightmost charge in certain random growth models. We obtain some precise asymptotics results, which are in a sense similar to the precise asymptotics for sums of independent random variables in the context of the law of large numbers and complete convergence. Our proofs depend heavily upon the upper and lower tail estimates for random matrices and random growth models. The Tracy-Widom distribution plays a central role as well.
基金partially supported by a William Fulbright Research Grant and a Competitive Research Grant at Georgetown University
文摘In this note, we compute the fundamental solution for the Hermite operator with singularity at an arbitrary point y∈R^n. We also apply this result to obtain the fundamental solutions for the Grushin operator in R^2 and the sub-Laplacian in the Heisenberg group Hn.
文摘This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an efficient procedure based on the modified Adomian decomposition method to obtain closed-form solutions of the Laguerre’s and the associated Laguerre’s differential equations. The proposed technique makes sense as the attitudes of the acquired solutions towards the neighboring singular points are correctly taken care of.
文摘Let f : M → R3 be an oriented surface with non-degenerate second fundamental form. We denote by H and K its mean curvature and Gauss curvature. Then the Laguerre volume of f, defined by L(f) = f(H2 - K)/KdM, is an invariant under the Laguerre transformations. The critical surfaces of the functional L are called Laguerre minimal surfaces. In this paper we study the Laguerre minimal surfaces in R^3 by using the Laguerre Gauss map. It is known that a generic Laguerre minimal surface has a dual Laguerre minimal surface with the same Gauss map. In this paper we show that any surface which is not Laguerre minimal is uniquely determined by its Laguerre Gauss map. We show also that round spheres are the only compact Laguerre minimal surfaces in R^3. And we give a classification theorem of surfaces in R^3 with vanishing Laguerre form.
基金Project (No.60574022) supported by the National Natural Science Foundation of China
文摘This paper deals with Wiener model based predictive control of a pH neutralization process.The dynamic linear block of the Wiener model is parameterized using Laguerre filters while the nonlinear block is constructed using least squares support vector machines (LSSVM).Input-output data from the first principle model of the pH neutralization process are used for the Wiener model identification.Simulation results show that the proposed Wiener model has higher prediction accuracy than Laguerre-support vector regression (SVR) Wiener models,Laguerre-polynomial Wiener models,and linear Laguerre models.The identified Wiener model is used here for nonlinear model predictive control (NMPC) of the pH neutralization process.The set-point tracking performance of the proposed NMPC is compared with those of the Laguerre-SVR Wiener model based NMPC,Laguerre-polynomial Wiener model based NMPC,and linear model predictive control (LMPC).Validation results show that the proposed NMPC outperforms the other three controllers.
基金Supported by the Department of Education of Hubei Province(B2014281)
文摘Let x : M → R n be an umbilical free hypersurface with non-zero principal curvatures, then x is associated with a Laguerre metric g, a Laguerre tensor L, a Laguerre form C, a Laguerre second fundamental form B, which are invariants of x under Laguerre transformation group. A classical theorem of Laguerre geometry states that M(n > 3) is characterized by g and B up to Laguerre equivalence. A Laguerre isopararmetric hypersurface is defined by satisfying the conditions that C = 0 and all the eigenvalues of B with respect to g are constant. It is easy to see that all Laguerre isopararmetric hypersurfaces are Dupin hypersurfaces. In this paper, we established a complete classification for all Laguerre isopararmetric hypersurfaces with three distinct principal curvatures in R7.
基金supported by the National Natural Science Foundation of China (Grant No. 10874174)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20070358009)
文摘By virtue of the coherent state representation and the operator ordering method we find a new approach for transiting Hermite polynomials to Laguerre polynomials. We also derive the new reciprocal relation of Laguerre polynomials ∑n=0 (-1)n (n^l)Ln (x) = x^l/n, n-O and its application in deriving the sum rule of the Wingner function of Fock states is demonstrated. Some new expansion identities about the operator Laguerre polynomial are also derived. This opens a new route of deriving mathematical polynomials formulas by virtute of the quantum mechanical representations and operator ordering technique.
基金supported by a research grant from the United States Air Force Office of Scientific Research(AFOSR) SBIR Phase I (Grant No. FA9550-09-C-0045)a Hong Kong RGC competitive earmarked research(Grant No. 600607)+1 种基金a competitive research grant at Georgetown University (Grant No. GD2236000)supported by Natural Science Foundation of Taiwan,China (Grant No.97-2115-M-002-015)
文摘Laguerre calculus is a powerful tool for harmonic analysis on the Heisenberg group. Many sub-elliptic partial differential operators can be inverted by Laguerre calculus. In this article, we use Laguerre calculus to find explicit kernels of the fundamental solution for the Paneitz operator and its heat equation. The Paneitz operator which plays an important role in CR geometry can be written as follows: $$ {\mathcal{P}_\alpha} = {\mathcal{L}_\alpha} \bar {\mathcal{L}_\alpha} = \frac{1} {4}\left[ {\sum\limits_{j = 1}^n {\left( {Z_j \bar Z_j + \bar Z_j Z_j } \right)} } \right]^2 + \alpha ^2 T^2 $$ Here “Z j ” j=1 n is an orthonormal basis for the subbundle T (1,0) of the complex tangent bundle T ?(H n ) and T is the “missing direction”. The operator $ \mathcal{L}_\alpha $ is the sub-Laplacian on the Heisenberg group which is sub-elliptic if α does not belong to an exceptional set Λ α . We also construct projection operators and relative fundamental solution for the operator $ \mathcal{L}_\alpha $ while α ∈ Λ α .
基金supported by National Natural Science Foundation of China(Grant No.11171227)Fund for Doctoral Authority of China(Grant No.20123127110001)+1 种基金Fund for E-institute of Shanghai Universities(Grant No.E03004)Leading Academic Discipline Project of Shanghai Municipal Education Commission(Grant No.J50101)
文摘In this paper, we review some results on the spectral methods. We first consider the Jacobi spectral method and the generalized Jacobi spectral method for various problems, including degenerated and singular differential equations. Then we present the generalized Jacobi quasi-orthogonal approximation and its applica- tions to the spectral element methods for high order problems with mixed inhomogeneous boundary conditions. We also discuss the related spectral methods for non-rectangular domains and the irrational spectral methods for unbounded domains. Next, we consider the Hermite spectral method and the generalized Hermite spec- tral method with their applications. Finally, we consider the Laguerre spectral method and the generalized Laguerre spectral method for many problems defined on unbounded domains. We also present the generalized Laguerre quasi-orthogonal approximation and its applications to certain problems of non-standard type and exterior problems.
文摘Laguerre geometry of surfaces in R^3 is given in the book of Blaschke, and has been studied by Musso and Nicolodi, Palmer, Li and Wang and other authors. In this paper we study Laguerre minimal surface in 3-dimensional Euclidean space R^3. We show that any Laguerre minimal surface in R^3 can be constructed by using at most two holomorphic functions. We show also that any Laguerre minimal surface in R^3 with constant Laguerre curvature is Laguerre equivalent to a surface with vanishing mean curvature in the 3-dimensional degenerate space R0^3.
基金Funded by National Natural Science Foundation of China(No.50571042)the Natural Science Foundation of Gansu Province of China(Nos.1208RJZA285,1208RJZA121)Lanzhou University of Technology(No.01-0278)
文摘Simulation method was designed to divide Laguerre diagram for right circle group with different weight; out-of-core incremental algorithm for Laguerre diagram was constructed; simulation program development and visualization was done and simulation was realized in user-specified arbitrary area for simulation of metal materials microstructure, which facilitated the practical application and secondary development of Laguerre diagram in the field of material science engineering. Finally, the utilization of a developed software package exemplified the simulation application of microstructure about metal materials and proved its validity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61475123,61571355,and 61308025)the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.2016JQ4015)the Overseas Training Program for Young Backbones Teachers Sponsored by China Scholarship Council and Xidian University
文摘Based on angular spectrum expansion and 4 × 4 matrix theory, the reflection and transmission characteristics of a Laguerre Gaussian (LG) beam from uniaxial anisotropic multilayered media are studied. The reflected and transmitted beam fields of an LG beam are derived. In the case where the principal coordinates of the uniaxial anisotropic media coincide with the global coordinates, the reflected and transmitted beam intensities from a uniaxial anisotropic slab and three-layered media are numerically simulated. It is shown that the reflected intensity components of the incident beam, especially the TM polarized incident beam, are smaller than the transmitted intensity components. The distortion of the reflected intensity component is more evident than that of the transmitted intensity component. The distortion of intensity distribution is greatly affected by the dielectric tensor and the thickness of anisotropic media. We finally extend the application of the method to general anisotropic multilayered media.
基金Supported by National Natural Science Foundation of China(Grant No.10826062)Natural Science Foundation of Fujian Province of China(Grant No.2012J01020)the Fundamental Research Funds for the Central Universities(Grant No.2011121040)
文摘An umbilical free oriented hypersurfacex:M→Rnwith non-zero principal curvatures is called a Laguerre isoparametric hypersurface if its Laguerre form C=i Ciωi=iρ1(Ei(logρ)(r ri)Ei(r))ωi vanishes and Laguerre shape operator S=ρ1(S 1 rid)has constant eigenvalues.Hereρ=i(r ri)2,r=r1+r2+···+rn 1n 1is the mean curvature radius andSis the shape operator ofx.{Ei}is a local basis for Laguerre metric g=ρ2III with dual basis{ωi}and III is the third fundamental form ofx.In this paper,we classify all Laguerre isoparametric hypersurfaces in Rn(n〉3)with two distinct non-zero principal curvatures up to Laguerre transformations.
基金supported by the National Natural Science Foundation of China Project(Nos.12071402,11931003,12261131501,and 11971276)the Project of Scientific Research Fund of the Hunan Provincial Science and Technology Department(No.2022RC3022).
文摘In this paper spectral Galerkin approximation of optimal control problem governed by fractional elliptic equation is investigated.To deal with the nonlocality of fractional Laplacian operator the Caffarelli-Silvestre extension is utilized.The first order optimality condition of the extended optimal control problem is derived.A spectral Galerkin discrete scheme for the extended problem based on weighted Laguerre polynomials is developed.A priori error estimates for the spectral Galerkin discrete scheme is proved.Numerical experiments are presented to show the effectiveness of our methods and to verify the theoretical findings.
文摘The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimensional(2D)nonorthogonal associated Laguerre basis set. The 2D quantum confinement effect together with the strongly reduced dielectric screening results in the strong attractive Coulomb potential between electron and donor ion, with exceptionally large impurity binding energy and huge intersubband oscillator strength. These lead to the strong interaction of the electron with light in a 2D regime. The intersubband optical absorption spectra exhibit strong absorption lines of the non-hydrogenic Rydberg series in the mid-infrared range of light. The strength of the Coulomb potential can be controlled by changing the dielectric environment. The electron affinity difference leads to charge transfer between ML TMD and the dielectric environment, generating the polarization-electric field in ML TMD accompanied by weakening the Coulomb interaction strength. The larger the dielectric constant of the dielectric environment, the more the charge transfer is, accompanied by the larger polarization-electric field and the stronger dielectric screening. The dielectric environment is shown to provide an efficient tool to tune the wavelength and output of the mid-infrared intersubband devices based on ML TMDs.
基金supported by Scienticfic Research Fund of Yunnan Provincial Education Department(Grant No.2014Y445)supported by Scienticfic Research Fund of Yunnan Provincial Education Department(Grant No.2015Y101)Yunnan Applied Basic Research Young Project
文摘Let x : M^n-1→ R^n be an umbilical free hypersurface with non-zero principal curvatures. Two basic invariants of M under the Laguerre transformation group of Rn are Laguerre form C and Laguerre tensor L. In this paper, we prove the following theorem: Let M be an (n-1)-dimensional (n 〉 3) complete hypersurface with vanishing Laguerre form and with constant Laguerre scalar curvature R in R^n, denote the trace-free Laguerre tensor by L = L -1/n-1tr(L)· Id. If supM ||L||=0,then M is Laguerre equivalent to a Laguerre isotropic hypersurface; and if supM ||L^-||≡√(n-1)(n-2)R/ (n-1)(n-2)(n-3) , M isLaguerre equivalent to the hypersurface x^- : H^1× S^n-2 → R^n.