期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于标记密度分类间隔面的组类属属性学习 被引量:1
1
作者 王一宾 裴根生 程玉胜 《电子与信息学报》 EI CSCD 北大核心 2020年第5期1179-1187,共9页
类属属性学习避免相同属性预测全部标记,是一种提取各标记独有属性进行分类的一种框架,在多标记学习中得到广泛的应用。而针对标记维度较大、标记分布密度不平衡等问题,已有的基于类属属性的多标记学习算法普遍时间消耗大、分类精度低... 类属属性学习避免相同属性预测全部标记,是一种提取各标记独有属性进行分类的一种框架,在多标记学习中得到广泛的应用。而针对标记维度较大、标记分布密度不平衡等问题,已有的基于类属属性的多标记学习算法普遍时间消耗大、分类精度低。为提高多标记分类性能,该文提出一种基于标记密度分类间隔面的组类属属性学习(GLSFL-LDCM)方法。首先,使用余弦相似度构建标记相关性矩阵,通过谱聚类将标记分组以提取各标记组的类属属性,减少计算全部标记类属属性的时间消耗。然后,计算各标记密度以更新标记空间矩阵,将标记密度信息加入原标记中,扩大正负标记的间隔,通过标记密度分类间隔面的方法有效解决标记分布密度不平衡问题。最后,通过将组类属属性和标记密度矩阵输入极限学习机以得到最终分类模型。对比实验充分验证了该文所提算法的可行性与稳定性。 展开更多
关键词 多标记分类 标记密度 组类属属性 极限学习机 分类间隔面
下载PDF
针刺和静力牵张对大负荷运动后骨骼肌粗丝结构变化影响的免疫电镜研究 被引量:4
2
作者 卢鼎厚 樊景禹 +1 位作者 屈竹青 唐晓晶 《体育科学》 CSSCI 北大核心 1993年第1期46-48,63+94-95,共6页
用胶体金—蛋白 A 复合物标记兔抗鸡骨骼肌球蛋白抗血清定位大负荷运动后人股外肌 A 带粗丝肌球蛋白,观察到:A 带粗丝结构变化时,其肌球蛋白免疫标记密度下降,针刺和静力牵张提高大负荷运动后 A 带粗丝肌球蛋白免疫标记密度。
关键词 运动 肌球蛋白 免疫电镜 针刺 静力牵张
下载PDF
基于分类间隔增强的不平衡多标签学习算法 被引量:2
3
作者 程玉胜 曹天成 《数据采集与处理》 CSCD 北大核心 2021年第3期519-528,共10页
传统的多标签学习算法一般没有考虑标签的不均衡性,从而忽略了标签不平衡给分类带来的影响。但统计发现,目前常用的多标签数据集均存在标签不均衡问题,且少数类标签往往更加重要。基于此,本文提出了一种基于分类间隔增强的不平衡多标签... 传统的多标签学习算法一般没有考虑标签的不均衡性,从而忽略了标签不平衡给分类带来的影响。但统计发现,目前常用的多标签数据集均存在标签不均衡问题,且少数类标签往往更加重要。基于此,本文提出了一种基于分类间隔增强的不平衡多标签学习算法(Imbalanced multi-label learning algorithm based on classification interval enhanced,MLCIE),旨在利用各标签分类间隔的重构来增强分类器对少数类标签样本的学习效率,提升样本标签质量,从而减少多标签不平衡对分类器学习精度的影响。首先利用各标签密度与条件熵计算各标签的不确定性系数;然后构建分类间隔增强矩阵,将各标签独有的密度信息融入到原始标签矩阵中,获取平衡的标签空间;最后使用极限学习机作为线性分类器进行分类。本文在11个多标签标准数据集上与其他7种多标签学习算法进行对比实验,结果表明本文算法在解决标签不平衡问题上有一定效果。 展开更多
关键词 多标签学习 标签不平衡 分类间隔 标签密度 极限学习机
下载PDF
基于负相关性增强的不平衡多标签学习算法 被引量:1
4
作者 程玉胜 曹天成 +1 位作者 王一宾 郑伟杰 《计算机工程与科学》 CSCD 北大核心 2021年第9期1700-1710,共11页
由于标签空间过大,标签分布不平衡问题在多标签数据集中广泛存在,解决该问题在一定程度上可以提高多标签学习的分类性能。通过标签相关性提升分类性能是解决该问题的一种最常见的有效策略,众多学者进行了大量研究,然而这些研究更多地是... 由于标签空间过大,标签分布不平衡问题在多标签数据集中广泛存在,解决该问题在一定程度上可以提高多标签学习的分类性能。通过标签相关性提升分类性能是解决该问题的一种最常见的有效策略,众多学者进行了大量研究,然而这些研究更多地是采用基于正相关性策略提升性能。在实际问题中,除了正相关性外,标签的负相关性也可能存在,如果在考虑正相关性的同时,兼顾负相关性,无疑能够进一步改善分类器的性能。基于此,提出了一种基于负相关性增强的不平衡多标签学习算法——MLNCE,旨在解决多标签不平衡问题的同时,兼顾标签间的正负相关性,从而提高多标签分类器的分类性能。首先利用标签密度信息改造标签空间;然后在密度标签空间中探究标签真实的正反相关性信息,并添加到分类器目标函数中;最后利用加速梯度下降法求解输出权重以得到预测结果。在11个多标签标准数据集上与其他6种多标签学习算法进行对比实验,结果表明MLNCE算法可以有效提高分类精度。 展开更多
关键词 多标签学习 多标签不平衡 标签正负相关性 标签密度 加速梯度下降法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部