LaNi(0.6)Fe(0.4)O(3-δ) (LNF) powders were synthesized by the glycine-nitrate process and LNF-gadolinium-doped ceria (GDC) nanocomposite cathodes for solid oxide fuel cells (SOFCs) were fabricated by infil...LaNi(0.6)Fe(0.4)O(3-δ) (LNF) powders were synthesized by the glycine-nitrate process and LNF-gadolinium-doped ceria (GDC) nanocomposite cathodes for solid oxide fuel cells (SOFCs) were fabricated by infiltration from LNF porous backbones. Electrochemical properties and Cr-poisoning behavior of LNF-GDC cathodes were studied. Single phase perovskite LNF could be obtained at the glycine to nitrate molar ratio of 1:1. The polarization resistance of the LNF-GDC nanocomposite cathode was significantly decreased in comparison with the LNF. This phenomenon was associated with enhanced catalytic activity and enlarged triple-phase boundary (TPB) length by GDC nano particles. In addition, the nanocomposite cathode showed good Cr tolerance under open circuit condition. The LNF-GDC nanocomposite cathodes were expected for use as a potential cathode in intermediate- temperature solid oxide fuel cells (IT-SOFC).展开更多
基金supported by a grant from the Fundamental R&D Program for Core Technology of Materials (No.10051006)funded by the Ministry of Knowledge Economy, Republic of Koreasupported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20113020030050)
文摘LaNi(0.6)Fe(0.4)O(3-δ) (LNF) powders were synthesized by the glycine-nitrate process and LNF-gadolinium-doped ceria (GDC) nanocomposite cathodes for solid oxide fuel cells (SOFCs) were fabricated by infiltration from LNF porous backbones. Electrochemical properties and Cr-poisoning behavior of LNF-GDC cathodes were studied. Single phase perovskite LNF could be obtained at the glycine to nitrate molar ratio of 1:1. The polarization resistance of the LNF-GDC nanocomposite cathode was significantly decreased in comparison with the LNF. This phenomenon was associated with enhanced catalytic activity and enlarged triple-phase boundary (TPB) length by GDC nano particles. In addition, the nanocomposite cathode showed good Cr tolerance under open circuit condition. The LNF-GDC nanocomposite cathodes were expected for use as a potential cathode in intermediate- temperature solid oxide fuel cells (IT-SOFC).