期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于级联微型神经网络的多角度车辆检测方法 被引量:5
1
作者 李浩 连捷 王辛岩 《计算机工程与应用》 CSCD 北大核心 2018年第22期233-238,共6页
车辆检测是智能交通系统建设的关键步骤,但在光照变化、遮挡等复杂交通场景下,单一角度视频检测的方法无法准确地获取车辆特定特征。为了提高交通监控图像中车辆检测的准确性,将AdaBoost算法嵌入微型的神经网络模型,并结合局部归一化像... 车辆检测是智能交通系统建设的关键步骤,但在光照变化、遮挡等复杂交通场景下,单一角度视频检测的方法无法准确地获取车辆特定特征。为了提高交通监控图像中车辆检测的准确性,将AdaBoost算法嵌入微型的神经网络模型,并结合局部归一化像素差值特征(LNPD),提出了基于级联微型神经网络的多角度车辆检测方法。该方法首先提取检测图像的局部归一化像素差值特征,然后使用多层感知器学习最优的特征子集及其组合特征,最后使用AdaBoost算法筛选最具区分力的特征构建强分类器。以不同复杂程度的真实交通场景中包含有正面、侧面及背面三个角度的样本集作为测试集,并与NPD、DPM-V5、ACF和RCNN等方法进行了定性与定量对比。实验结果表明,该车辆检测方法在三种数据集上的平均检测率和检测时间分别为82.28%和125 ms,优于传统车辆检测方法。 展开更多
关键词 智能交通 车辆检测 微型神经网 lnpd特征 级联分类器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部