局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法...局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法首先利用小波包去除信号中的噪声,然后,进行LMD分解,并将分解后PF分量与分解前信号的相关系数作为判断标准,剔除多余低频PF分量,最后,选取有效PF集进行功率谱分析,提取故障特征。通过仿真数据和真实滚动轴承数据的故障诊断实验,其结果验证了该方法的有效性。展开更多
针对滚动轴承的故障振动信号的非平稳特性,提出了一种基于局部均值分解(Local mean decomposition,简称LMD)和神经网络的滚动轴承诊断方法。该方法首先对信号进行局部均值分解,将其分解为若干个PF分量(Product function,简称PF)之和,再...针对滚动轴承的故障振动信号的非平稳特性,提出了一种基于局部均值分解(Local mean decomposition,简称LMD)和神经网络的滚动轴承诊断方法。该方法首先对信号进行局部均值分解,将其分解为若干个PF分量(Product function,简称PF)之和,再选取包含主要故障信息的PF分量进行进一步分析,从这些分量中提取时域统计量和能量等特征参数作为神经网络的输入参数来识别滚动轴承的故障类别。通过对滚动轴承正常状态,内圈故障和外圈故障的分析,表明了基于LMD与神经网络的诊断方法比基于小波包分析与神经网络的诊断方法有更高的故障识别率,同时也证明了该方法可以准确、有效地对滚动轴承的工作状态和故障类型进行分类。展开更多
为了从故障轴承信号中提取包含故障信号的特征频率,提出了基于LMD(Local Mean Decomposition,LMD)自适应多尺度形态学和Teager能量算子解调的方法。首先,采用LMD将目标信号分解成有限个PF(Product Function,PF)分量,分别对其进行多尺度...为了从故障轴承信号中提取包含故障信号的特征频率,提出了基于LMD(Local Mean Decomposition,LMD)自适应多尺度形态学和Teager能量算子解调的方法。首先,采用LMD将目标信号分解成有限个PF(Product Function,PF)分量,分别对其进行多尺度形态学滤波,利用峭度准则优化形态学结构元素尺度,自适应寻求最优解,最后用Teager能量算子计算各PF分量的瞬时幅值,通过瞬时Teager能量的Fourier频谱识别轴承的故障特征频率。为了验证理论的正确性,进行了数字仿真实验和轴承故障模拟实验,并与EMD形态学和包络解调方法进行了比较,结果表明该算法明显优于其他两种方法,对滚动轴承外圈、内圈和滚子故障的检测精度更高,能够清晰地提取出故障信号的频率特征。展开更多
针对含噪声的暂态电能质量扰动检测问题,提出了一种基于小波自适应去噪的改进HT-LMD(HilbertHuang and Local Mean Decomposition)分解检测方法。分析了局部均值分解检测扰动的优缺点以及噪声对LMD检测方法的影响,提出了采用小波分解与...针对含噪声的暂态电能质量扰动检测问题,提出了一种基于小波自适应去噪的改进HT-LMD(HilbertHuang and Local Mean Decomposition)分解检测方法。分析了局部均值分解检测扰动的优缺点以及噪声对LMD检测方法的影响,提出了采用小波分解与重构和自适应阈值技术以及基于正交性判据(Orthogonality Criterion,OC)新的HT-LMD检测方法。小波自适应去噪技术能减弱噪声对LMD分解影响,正交性判据能减少分解的迭代次数。典型暂态电能质量扰动模拟信号和实测信号的检测结果表明,所提方法能在有效提高LMD方法检测电能质量扰动效果同时很好地保留原有暂态扰动信号奇异性特征,提高了检测和定位精度。展开更多
文摘局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法首先利用小波包去除信号中的噪声,然后,进行LMD分解,并将分解后PF分量与分解前信号的相关系数作为判断标准,剔除多余低频PF分量,最后,选取有效PF集进行功率谱分析,提取故障特征。通过仿真数据和真实滚动轴承数据的故障诊断实验,其结果验证了该方法的有效性。
文摘针对滚动轴承的故障振动信号的非平稳特性,提出了一种基于局部均值分解(Local mean decomposition,简称LMD)和神经网络的滚动轴承诊断方法。该方法首先对信号进行局部均值分解,将其分解为若干个PF分量(Product function,简称PF)之和,再选取包含主要故障信息的PF分量进行进一步分析,从这些分量中提取时域统计量和能量等特征参数作为神经网络的输入参数来识别滚动轴承的故障类别。通过对滚动轴承正常状态,内圈故障和外圈故障的分析,表明了基于LMD与神经网络的诊断方法比基于小波包分析与神经网络的诊断方法有更高的故障识别率,同时也证明了该方法可以准确、有效地对滚动轴承的工作状态和故障类型进行分类。
文摘为了从故障轴承信号中提取包含故障信号的特征频率,提出了基于LMD(Local Mean Decomposition,LMD)自适应多尺度形态学和Teager能量算子解调的方法。首先,采用LMD将目标信号分解成有限个PF(Product Function,PF)分量,分别对其进行多尺度形态学滤波,利用峭度准则优化形态学结构元素尺度,自适应寻求最优解,最后用Teager能量算子计算各PF分量的瞬时幅值,通过瞬时Teager能量的Fourier频谱识别轴承的故障特征频率。为了验证理论的正确性,进行了数字仿真实验和轴承故障模拟实验,并与EMD形态学和包络解调方法进行了比较,结果表明该算法明显优于其他两种方法,对滚动轴承外圈、内圈和滚子故障的检测精度更高,能够清晰地提取出故障信号的频率特征。
文摘针对含噪声的暂态电能质量扰动检测问题,提出了一种基于小波自适应去噪的改进HT-LMD(HilbertHuang and Local Mean Decomposition)分解检测方法。分析了局部均值分解检测扰动的优缺点以及噪声对LMD检测方法的影响,提出了采用小波分解与重构和自适应阈值技术以及基于正交性判据(Orthogonality Criterion,OC)新的HT-LMD检测方法。小波自适应去噪技术能减弱噪声对LMD分解影响,正交性判据能减少分解的迭代次数。典型暂态电能质量扰动模拟信号和实测信号的检测结果表明,所提方法能在有效提高LMD方法检测电能质量扰动效果同时很好地保留原有暂态扰动信号奇异性特征,提高了检测和定位精度。