期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A fast registration algorithm of rock point cloud based on spherical projection and feature extraction 被引量:12
1
作者 Yaru XIAN Jun XIAO Ying WANG 《Frontiers of Computer Science》 SCIE EI CSCD 2019年第1期170-182,共13页
Point cloud registration is an essential step in the process of 3D reconstruction.In this paper,a fast registration algorithm of rock mass point cloud is proposed based on the improved iterative closest point (ICP)alg... Point cloud registration is an essential step in the process of 3D reconstruction.In this paper,a fast registration algorithm of rock mass point cloud is proposed based on the improved iterative closest point (ICP)algorithm.In our proposed algorithm,the point cloud data of single station scanner is transformed into digital images by spherical polar coordinates,then image features are extracted and edge points are removed,the features used in this algorithm is scale-invariant feature transform (SIFT).By analyzing the corresponding relationship between digital images and 3D points,the 3D feature points are extracted,from which we can search for the two-way correspondence as candidates. After the false matches are eliminated by the exhaustive search method based on random sampling,the transformation is computed via the Levenberg-Marquardt-Iterative Closest Point (LM-ICP)algorithm.Experiments on real data of rock mass show that the proposed algorithm has the similar accuracy and better registration efficiency compared with the ICP algorithm and other algorithms. 展开更多
关键词 ROCK point cloud REGISTRATION lm-icp SPHERICAL PROJECTION feature extraction
原文传递
基于逐点前进法的改进型点云配准方法
2
作者 李茂月 许圣博 +1 位作者 孟令强 刘志诚 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第4期875-885,共11页
点云配准是获取三维点云模型空间姿态的关键步骤,为了进一步提高点云配准的效率和准确性,提出了一种基于逐点前进法特征点提取的改进型点云配准方法。首先,利用逐点前进法快速提取点云特征点,在保留点云模型特征的同时大幅精简点云数量... 点云配准是获取三维点云模型空间姿态的关键步骤,为了进一步提高点云配准的效率和准确性,提出了一种基于逐点前进法特征点提取的改进型点云配准方法。首先,利用逐点前进法快速提取点云特征点,在保留点云模型特征的同时大幅精简点云数量。然后,通过使用法向量约束改进的KN-4PCS算法进行粗配准,以实现源点云与目标点云的初步配准。最后,使用双向Kd-tree优化的LM-ICP算法完成精配准。实验结果显示:在斯坦福大学开放点云数据配准实验中,其平均误差较SAC-IA+ICP算法减少了约70.2%,较NDT+ICP算法减少了约49.6%,配准耗时分别减少约86.2%和81.9%,同时在引入不同程度的高斯噪声后仍能保持较高的精度和较低的耗时。在真实室内物体点云配准实验中,其平均配准误差为0.0742 mm,算法耗时平均为0.572 s。通过斯坦福开放数据与真实室内场景物体点云数据对比分析结果表明:本方法能够有效提高点云配准的效率、准确性和鲁棒性,为基于点云的室内目标识别与位姿估计奠定了良好的基础。 展开更多
关键词 点云配准 KN-4PCS 双向Kd-tree lm-icp
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部