Currently,supra-wavelength periodic surface structures(SWPSS)are only achievable on silica dielectrics and silicon by femtosecond(fs)laser ablation,while triangular and rhombic laser induced periodic surface structure...Currently,supra-wavelength periodic surface structures(SWPSS)are only achievable on silica dielectrics and silicon by femtosecond(fs)laser ablation,while triangular and rhombic laser induced periodic surface structures(LIPSS)are achievable by circularly polarized or linear cross-polarized femtosecond laser.This is the first work to demonstrate the possibility of generating SWPSS on Sn and triangular and rhombic LIPSS on W,Mo,Ta,and Nb using a single linearly polarized femtosecond laser.We discovered,for the first time,SWPSS patches with each possessing its own orientation,which are completely independent of the light polarization direction,thus,breaking the traditional rules.Increasing the laser power enlarges SWPSS periods from 4–6μm to 15–25μm.We report a maximal period of 25μm,which is the largest period ever reported for SWPSS,~10 and~4 times the maximal periods(2.4μm/6.5μm)of SWPSS ever achieved by fs and ns laser ablation,respectively.The formation of triangular and rhombic LIPSS does not depend on the laser(power)or processing(scan interval and scan methodology)parameters but strongly depends on the material composition and is unachievable on other metals,such as Sn,Al,Ti,Zn,and Zr.This paper proposes and discusses possible mechanisms for molten droplet generation/spread/solidification,Marangoni convection flow for SWPSS formation,and linear-to-circular polarization transition for triangular and rhombic LIPSS formation.Reflectance and iridescence of as-prepared SWPSS and LIPSS are characterized.It was found that besides insufficient ablation on W,the iridescence density of Ta-,Mo-,Nb-LIPSS follows the sequence of melting temperatures:Ta>Mo>Nb,which indicates that the melting temperature of metals may affect the regularity of LIPSS.This work may inspire significant interest in further enriching the diversity of LIPSS and SWPSS.展开更多
In this study,we demonstrate a technique termed underwater persistent bubble assisted femtosecond laser ablation in liquids(UPB-fs-LAL)that can greatly expand the boundaries of surface micro/nanostructuring through la...In this study,we demonstrate a technique termed underwater persistent bubble assisted femtosecond laser ablation in liquids(UPB-fs-LAL)that can greatly expand the boundaries of surface micro/nanostructuring through laser ablation because of its capability to create concentric circular macrostructures with millimeter-scale tails on silicon substrates.Long-tailed macrostructures are composed of layered fan-shaped(central angles of 45°–141°)hierarchical micro/nanostructures,which are produced by fan-shaped beams refracted at the mobile bubble interface(.50°light tilt,referred to as the vertical incident direction)during UPB-fs-LAL line-by-line scanning.Marangoni flow generated during UPB-fs-LAL induces bubble movements.Fast scanning(e.g.1mms−1)allows a long bubble movement(as long as 2mm),while slow scanning(e.g.0.1mms−1)prevents bubble movements.When persistent bubbles grow considerably(e.g.hundreds of microns in diameter)due to incubation effects,they become sticky and can cause both gas-phase and liquidphase laser ablation in the central and peripheral regions of the persistent bubbles.This generates low/high/ultrahigh spatial frequency laser-induced periodic surface structures(LSFLs/HSFLs/UHSFLs)with periods of 550–900,100–200,40–100 nm,which produce complex hierarchical surface structures.A period of 40 nm,less than 1/25th of the laser wavelength(1030 nm),is the finest laser-induced periodic surface structures(LIPSS)ever created on silicon.The NIR-MIR reflectance/transmittance of fan-shaped hierarchical structures obtained by UPB-fs-LAL at a small line interval(5μm versus 10μm)is extremely low,due to both their extremely high light trapping capacity and absorbance characteristics,which are results of the structures’additional layers and much finer HSFLs.In the absence of persistent bubbles,only grooves covered with HSFLs with periods larger than 100 nm are produced,illustrating the unique attenuation abilities of laser properties(e.g.repetition rate,energy,incident angle,etc)by persistent bub展开更多
Orientations of laser induced periodic surface structures(LIPSS)are usually considered to be governed by the laser polarization state.In this work,we unveil that fluid dynamics induced by femtosecond(fs)laser ablation...Orientations of laser induced periodic surface structures(LIPSS)are usually considered to be governed by the laser polarization state.In this work,we unveil that fluid dynamics induced by femtosecond(fs)laser ablation in liquid(fs-LAL)can easily break this polarization restriction to produce irregular circular-LIPSS(CLIPPS)and crisscross-LIPSS(CCLIPSS).Fs laser ablation of silicon in water shows formation of diverse LIPSS depending on ablation conditions.At a high power of 700 mW(repetition rate of 100 kHz,pulse duration of 457 fs and wavelength of 1045 nm),single/twin CLIPSS are produced at the bottom of macropores of several microns in diameter due to the formation of strong liquid vortexes and occurrence of the vortex shedding effect.Theoretical simulations validate our speculation about the formation of liquid vortex with an ultrahigh static pressure,which can induce the microstructure trenches and cracks at the sidewalls for fs-LAL of Si and tungsten(W)in water,respectively.At a low power of 50 mW,weak liquid vortexes are produced,which only give birth to curved LIPSS in the valleys of grooves.Consequently,it is deduced that liquid vortex plays a crucial role in the formation of macropores.Mountain-like microstructures induce complex fluid dynamics which can cause the formation of CCLIPSS on them.It is believed that liquid vortexes and fluid dynamics presented in this work open up new possibilities to diversify the morphologies of LIPSS formed by fs-LAL.展开更多
The diffusion and loss of lithium polysulfides(LiPSs)in lithium-sulfur batteries(LSBs)reduce the sulfur utilization rate and the catalytic conversion efficiency of sulfur species,resulting in early battery failure.Li_...The diffusion and loss of lithium polysulfides(LiPSs)in lithium-sulfur batteries(LSBs)reduce the sulfur utilization rate and the catalytic conversion efficiency of sulfur species,resulting in early battery failure.Li_(2)ZnTi_(3)O_(8)(LZTO),characterized by its stable spinel structure,exhibits high Li+conductivity and holds great potential as an effective adsorbent for LiPSs.This study proposes a collaborative design concept of LZTO host–separator modifier,which offers a complementary and matching approach in the cathode side,effectively addressing the challenges associated with dissolution and inadequate conversion of LiPSs.Density functional theory(DFT)calculation substantiates the pronounced chemical affinity of LZTO towards LiPSs.More importantly,the high efficiency ion transport channels are achieved in separator coating due to the presence of the LZTO particles.Furthermore,the catalytic efficacy of LZTO is validated through meticulous analysis of symmetric batteries and Tafel curves.Consequently,the LZTO host–separator modifier-based cell displays satisfactory rate capability(1449 and 1166 mAh·g^(−1)at 0.1 and 0.5 C)and an impressively capacity(606 mAh·g^(−1)after 500 cycles at 1 C).The coordinated strategy of host–separator modifier is supposed to have wide applications in LSBs.展开更多
Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natu...Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natural reserves,low cost of elemental sulfur,and environmentally friendly properties.However,several challenges impede its commercialization including low conductivity of sulfur itself,the severe“shuttle effect”caused by lithium polysulfides(LiPSs)during charge–discharge processes,volume expansion effects and sluggish reaction kinetics.As a solution,polar metal particles and their compounds have been introduced as the main hosts for sulfur cathode due to their robust catalytic activity and adsorption capability,effectively suppressing the“shuttle effect”of Li PSs.Bimetallic alloys and their compounds with multi-functional properties exhibit remarkable electrochemical performance more readily when compared to single-metal materials.Well-designed bimetallic materials demonstrate larger specific surface areas and richer active sites,enabling simultaneous high adsorption capability and strong catalytic properties.The synergistic effect of the“adsorption-catalysis”sites accelerates the adsorptiondiffusion-conversion process of Li PSs,ultimately achieving a long-lasting Li-S battery.Herein,the latest progress and performance of bimetallic materials in cathodes,separators,and interlayers of Li-S batteries are systematically reviewed.Firstly,the principles and challenges of Li-S batteries are briefly analyzed.Then,various mechanisms for suppressing“shuttle effects”of Li PSs are emphasized at the microscale.Subsequently,the performance parameters of various bimetallic materials are comprehensively summarized,and some improvement strategies are proposed based on these findings.Finally,the future prospects of bimetallic materials are discussed,with the hope of providing profound insights for the rational design and manufacturing of high-performance bimetallic materials for LSBs.展开更多
Lithium-sulfur(Li-S)batteries with high theoretical specific energy are considered to be one of the highly promising next-generation energy storage systems.However,the shuttle effect of lithium polysulfides(LiPSs)and ...Lithium-sulfur(Li-S)batteries with high theoretical specific energy are considered to be one of the highly promising next-generation energy storage systems.However,the shuttle effect of lithium polysulfides(LiPSs)and the interfacial instability of Li anodes have seriously hindered the practical application of Li-S batteries.Optimizing the electrolyte composition with additives can significantly improve the battery performance and has attracted great attention.Herein,we propose an organometallic salt,i.e.,nickel bromide dimethoxyethane(NiBr_(2)DME),as an electrolyte additive,which serves as the dual function of regulating LiPSs redox and synchronously stabilizing Li anodes.We reveal that NiBr_(2)DME can interact with LiPSs via Ni-S and Li-Br bonds,and accelerate the mutual transformation of LiPSs,thus reducing the accumulation of LiPSs in the electrolyte.In addition,NiBr_(2)DME can form a stable LiBr-containing interfacial layer on the Li metal surface,and promote the uniform electrodeposition of Li^(+)ions,and inhibit the formation of Li dendrites.Thus,Li-S batteries with a concentration of 0.5 mmol L^(-1)NiBr_(2)DME show an initial capacity of 919.8 mAh g^(-1)at 0.2 C,and a high capacity retention of 89.3%after 100 cycles.Even at the 4 C rate,a high discharge capacity of 602.9 mAh g^(-1)is achieved.Surprisingly,the good cycling performance is maintained under poor electrolyte conditions with sulfur loading of 4.8 mg cm^(-2)and electrlyte/sulfur ratio of 5µL mg^(-1).This work provides a positive solution to achieve the suppression of shuttle effect,the regulation of LiPSs redox and the stabilization of Li anodes.展开更多
Under certain conditions, ultrafast pulsed laser interaction with matter leads to the formation of self-organized conical as well as periodic surface structures (commonly reffered to as, laser induced periodic surfac...Under certain conditions, ultrafast pulsed laser interaction with matter leads to the formation of self-organized conical as well as periodic surface structures (commonly reffered to as, laser induced periodic surface structures, LIPSS). The purpose of the present investigations is to explore the effect of fsec laser fluence and ambient environments (Vacuum & 02) on the formation of LIPSS and conical structures on the Ti surface. The surface morphology was investigated by scanning electron microscope (SEM). The ablation threshold with single and multiple (N = 100) shots and the existence of an incubation effect was demonstrated by SEM investigations for both the vacuum and the 02 environment. The phase analysis and chemical composition of the exposed targets were performed by x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS), respectively. SEM investigations reveal the formation of LIPSS (nano & micro). FFT d-spacing calculations illustrate the dependence of periodicity on the fluence and ambient environment. The periodicity of nano-scale LIPSS is higher in the case of irradiation under vacuum conditions as compared to 02. Furthermore, the 02 environment reduces the ablation threshold. XRD data reveal that for the 02 environment, new phases (oxides of Ti) are formed. EDS analysis exhibits that after irradiation under vacuum conditions, the percentage of impurity element (A1) is reduced. The irradiation in the 02 environment results in 15% atomic diffusion of oxygen.展开更多
Ultrashort pulsed laser-induced periodic surface structures(LIPSS)can be generated on difFerent kinds of materials,which are widely utilized for modifying surface properties such as wettability,adhesion,and tribologic...Ultrashort pulsed laser-induced periodic surface structures(LIPSS)can be generated on difFerent kinds of materials,which are widely utilized for modifying surface properties such as wettability,adhesion,and tribological,as well as optical performances.Previous studies have focused mainly on one-dimensional LIPSS(i.e.,line structure)generation.In this study,a picosecond pulsed laser was used to irradiate stainless-steel surfaces for generating two-dimensional LIPSS,namely nanodot structures,by cross-scanning the laser beam for a different number of times.The obtained nanodot structures were found to be super hydrophilic just after laser irradiation,but turned to be hydrophobic after exposure in air for a few days.By cross・scanning the laser beam for the same number of times,local LIPSS rewriting was realized.This study showed the possibility of improving the homogeneity of the surface properties of steel materials through laser-induced nanodot structuring.展开更多
The delamination of copper lead frames from epoxy molding compounds(EMC)is a severe problem for microelectronic devices,as it leads to reduced heat dissipation or circuit breakage.The micro/nanoscale surface structuri...The delamination of copper lead frames from epoxy molding compounds(EMC)is a severe problem for microelectronic devices,as it leads to reduced heat dissipation or circuit breakage.The micro/nanoscale surface structuring of copper is a promising method to improve the copper-EMC interfacial adhesion.In this study,the generation of micro/nano hybrid structures on copper surfaces through femtosecond pulsed laser irradiation is proposed to improve interfacial adhesion.The micro/nano hybrid structures were realized by generating nanoscale laser-induced periodic surface structures(LIPSS)on microscale parallel grooves.Several types of hybrid surface structures were generated by changing the laser polarization direction,fluence,and scanning speed.At a specific aspect ratio of microgrooves,a latticed structure was generated on the sides of microgrooves by combining LIPSS formation and direct laser interference patterning.This study provides an efficient method for the micro/nanoscale hybrid surface structure formation for interfacial adhesion improvement between copperand EMC.展开更多
Femtosecond laser induced periodic surface structures(LIPSSs)are excellent biomimetic iridescent antireflective interfaces.In this work,we demonstrate the feasibility to develop tunable iridescent antireflective surfa...Femtosecond laser induced periodic surface structures(LIPSSs)are excellent biomimetic iridescent antireflective interfaces.In this work,we demonstrate the feasibility to develop tunable iridescent antireflective surfaces via simultaneous synthesis of functional metal-oxide nanomaterials,in situ deposition and hierarchical LIPSSs nanostructuring by means of femtosecond laser ablation(fs-LA)of tungsten(W)and molybdenum(Mo)in air.Adjusting the scanning interval from 1μm to 20μm allows the modulation of particle deposition rates on LIPSSs.Diminishing the scan interval enables a higher particle deposition rate,which facilitates the development of better UV-to-MIR ultrabroadband antireflective surfaces with a less pronounced iridescence.Through comparing the reflectance of hierarchical LIPSSs with different densities of loosely/tightly deposited particles,it is found that the deposited WO_(x)and MoO_(x)particle aggregates have high UV-to-MIR ultrabroadband absorbance,especially extraordinary in the MIR range.Loosely deposited particles which self-assembly into macroporous structures outperform tightly deposited particles for ultrabroadband antireflective applications.The presence of loosely deposited MoO_(x)and WO_(x)particle absorbers can cause up to 80%and 60%enhancement of antireflectance performances as compared to the tightly particle deposited LIPSSs samples.One stone of"fs-LA technique"with three birds of(particle generation,in situ deposition and LIPSS hierarchical nanostructuring)presented in this work opens up new opportunities to tune the reflectance and iridescence of metallic surfaces.展开更多
Lithium-sulfur batteries(LSBs)have a high theoretical capacity,which is considered as one of the most promising high-energy-density secondary batteries due to the double electrons reaction of sulfur.However,the shuttl...Lithium-sulfur batteries(LSBs)have a high theoretical capacity,which is considered as one of the most promising high-energy-density secondary batteries due to the double electrons reaction of sulfur.However,the shuttle effects of lithium polysulfides(Li PSs)and sluggish redox kinetics lead to their materials capacity loss and cycle stability deterioration,which restrains LSBs commercialization.Metallic compounds as additions can improve the electrochemical performance of the Li-S system,through the trap of Li PSs and accelerate the conversion of the soluble Li PSs.Among of them,the iron group elements(Fe,Ni,Co)-based compounds are the promising materials for the LSBs,due to their unique outer electronic structure and its tunable properties,low cost,abundant in the earth,environmental benignity,controllable and scalable prepared,and so on.In this review,we have made a summary for iron-based compounds to capture Li PSs according to lithium bond,sulfur bond and magnetic force.The type of iron-based compound including oxides,sulfides,nitrides,phosphides,carbides,and so on,and we have investigated the electrocatalytic mechanism of these materials.Besides,some improvement strategies are proposed,such as the engineering of the special micro/nanostructure,defect concentrations,band structures,and heterostructures.We hope to shed an in-depth light on the rationally design and fabrication of robust,commercial and stable materials for high-performance LSBs.展开更多
Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs hav...Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs have become a useful laser processing method,with broad prospects in adjusting material properties such as structural color,data storage,light absorption,and luminescence.This review discusses the formation mechanism of LIPSs,specifically the LIPS formation processes based on the pump-probe imaging method.The pulse shaping of a femtosecond laser in terms of the time/frequency,polarization,and spatial distribution is an efficient method for fabricating high-quality LIPSs.Various LIPS applications are also briefly introduced.The last part of this paper discusses the LIPS formation mechanism,as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications.展开更多
Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that canno...Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses(single-pulse mode).However,most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal.In this study,we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures(LIPSS)on silicon.It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction.In contrast,we find that the GHz burst mode femtosecond laser(wavelength:1030 nm,intra-pulse duration:220 fs,intra-pulse interval time(intra-pulse repetition rate):205 ps(4.88 GHz),burst pulse repetition rate:200 kHz)creates unique two-dimensional(2D)LIPSS.We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism.Specifically,generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS.Additionally,hydrodynamic instability including convection flow determines the final structure of 2D LIPSS.展开更多
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
The shuttle effect induced by soluble lithium polysulfides(LiPSs)is known as one of the crucial issues that limit the practical applications of lithium-sulfur(Li-S)batteries.Herein,a titanium dioxide nanoparticle embe...The shuttle effect induced by soluble lithium polysulfides(LiPSs)is known as one of the crucial issues that limit the practical applications of lithium-sulfur(Li-S)batteries.Herein,a titanium dioxide nanoparticle embedded in nitrogen-doped porous carbon nanofiber(TiO_(2)@NCNF)composite is constructed via an interface-induced polymerization strategy to serve as an ideal sulfur host.Under the protection of the nanofiber walls,the uniformly dispersed TiO_(2) nanocrystalline can act as capturing centers to constantly immobilize LiPSs towards durable sulfur chemistry.Besides,the mesoporous microstructure in the fibrous framework endows the TiO_(2)@NCNF host with strong physical reservation for sulfur and LiPSs,sufficient pathways for electron/ion transfer,and excellent endurance for volume change.As expected,the sulfur-loaded TiO_(2)@NCNF composite electrode presents a fabulous rate performance and long cycle lifespan(capacity fading rate of 0.062%per cycle over 500 cycles)at 2.0 C.Furthermore,the assembled Li-S batteries harvest superb areal capacity and cycling stability even under high sulfur loading and lean electrolyte conditions.展开更多
文摘Currently,supra-wavelength periodic surface structures(SWPSS)are only achievable on silica dielectrics and silicon by femtosecond(fs)laser ablation,while triangular and rhombic laser induced periodic surface structures(LIPSS)are achievable by circularly polarized or linear cross-polarized femtosecond laser.This is the first work to demonstrate the possibility of generating SWPSS on Sn and triangular and rhombic LIPSS on W,Mo,Ta,and Nb using a single linearly polarized femtosecond laser.We discovered,for the first time,SWPSS patches with each possessing its own orientation,which are completely independent of the light polarization direction,thus,breaking the traditional rules.Increasing the laser power enlarges SWPSS periods from 4–6μm to 15–25μm.We report a maximal period of 25μm,which is the largest period ever reported for SWPSS,~10 and~4 times the maximal periods(2.4μm/6.5μm)of SWPSS ever achieved by fs and ns laser ablation,respectively.The formation of triangular and rhombic LIPSS does not depend on the laser(power)or processing(scan interval and scan methodology)parameters but strongly depends on the material composition and is unachievable on other metals,such as Sn,Al,Ti,Zn,and Zr.This paper proposes and discusses possible mechanisms for molten droplet generation/spread/solidification,Marangoni convection flow for SWPSS formation,and linear-to-circular polarization transition for triangular and rhombic LIPSS formation.Reflectance and iridescence of as-prepared SWPSS and LIPSS are characterized.It was found that besides insufficient ablation on W,the iridescence density of Ta-,Mo-,Nb-LIPSS follows the sequence of melting temperatures:Ta>Mo>Nb,which indicates that the melting temperature of metals may affect the regularity of LIPSS.This work may inspire significant interest in further enriching the diversity of LIPSS and SWPSS.
文摘In this study,we demonstrate a technique termed underwater persistent bubble assisted femtosecond laser ablation in liquids(UPB-fs-LAL)that can greatly expand the boundaries of surface micro/nanostructuring through laser ablation because of its capability to create concentric circular macrostructures with millimeter-scale tails on silicon substrates.Long-tailed macrostructures are composed of layered fan-shaped(central angles of 45°–141°)hierarchical micro/nanostructures,which are produced by fan-shaped beams refracted at the mobile bubble interface(.50°light tilt,referred to as the vertical incident direction)during UPB-fs-LAL line-by-line scanning.Marangoni flow generated during UPB-fs-LAL induces bubble movements.Fast scanning(e.g.1mms−1)allows a long bubble movement(as long as 2mm),while slow scanning(e.g.0.1mms−1)prevents bubble movements.When persistent bubbles grow considerably(e.g.hundreds of microns in diameter)due to incubation effects,they become sticky and can cause both gas-phase and liquidphase laser ablation in the central and peripheral regions of the persistent bubbles.This generates low/high/ultrahigh spatial frequency laser-induced periodic surface structures(LSFLs/HSFLs/UHSFLs)with periods of 550–900,100–200,40–100 nm,which produce complex hierarchical surface structures.A period of 40 nm,less than 1/25th of the laser wavelength(1030 nm),is the finest laser-induced periodic surface structures(LIPSS)ever created on silicon.The NIR-MIR reflectance/transmittance of fan-shaped hierarchical structures obtained by UPB-fs-LAL at a small line interval(5μm versus 10μm)is extremely low,due to both their extremely high light trapping capacity and absorbance characteristics,which are results of the structures’additional layers and much finer HSFLs.In the absence of persistent bubbles,only grooves covered with HSFLs with periods larger than 100 nm are produced,illustrating the unique attenuation abilities of laser properties(e.g.repetition rate,energy,incident angle,etc)by persistent bub
基金This work was supported by the national key R&D program for internation-al collaboration under grant No.2018YFE9103900in part by the Nat-ural Science Foundation of China(NSFC)grant No.11972384 and the Guangdong MEPP Fund,grant No.GDOE[2019]A01.
文摘Orientations of laser induced periodic surface structures(LIPSS)are usually considered to be governed by the laser polarization state.In this work,we unveil that fluid dynamics induced by femtosecond(fs)laser ablation in liquid(fs-LAL)can easily break this polarization restriction to produce irregular circular-LIPSS(CLIPPS)and crisscross-LIPSS(CCLIPSS).Fs laser ablation of silicon in water shows formation of diverse LIPSS depending on ablation conditions.At a high power of 700 mW(repetition rate of 100 kHz,pulse duration of 457 fs and wavelength of 1045 nm),single/twin CLIPSS are produced at the bottom of macropores of several microns in diameter due to the formation of strong liquid vortexes and occurrence of the vortex shedding effect.Theoretical simulations validate our speculation about the formation of liquid vortex with an ultrahigh static pressure,which can induce the microstructure trenches and cracks at the sidewalls for fs-LAL of Si and tungsten(W)in water,respectively.At a low power of 50 mW,weak liquid vortexes are produced,which only give birth to curved LIPSS in the valleys of grooves.Consequently,it is deduced that liquid vortex plays a crucial role in the formation of macropores.Mountain-like microstructures induce complex fluid dynamics which can cause the formation of CCLIPSS on them.It is believed that liquid vortexes and fluid dynamics presented in this work open up new possibilities to diversify the morphologies of LIPSS formed by fs-LAL.
基金supported by the National Natural Science Foundation of China(No.22278347)State Key Laboratory of Physical Chemistry of Solid Surface(No.2021X21)State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources.
文摘The diffusion and loss of lithium polysulfides(LiPSs)in lithium-sulfur batteries(LSBs)reduce the sulfur utilization rate and the catalytic conversion efficiency of sulfur species,resulting in early battery failure.Li_(2)ZnTi_(3)O_(8)(LZTO),characterized by its stable spinel structure,exhibits high Li+conductivity and holds great potential as an effective adsorbent for LiPSs.This study proposes a collaborative design concept of LZTO host–separator modifier,which offers a complementary and matching approach in the cathode side,effectively addressing the challenges associated with dissolution and inadequate conversion of LiPSs.Density functional theory(DFT)calculation substantiates the pronounced chemical affinity of LZTO towards LiPSs.More importantly,the high efficiency ion transport channels are achieved in separator coating due to the presence of the LZTO particles.Furthermore,the catalytic efficacy of LZTO is validated through meticulous analysis of symmetric batteries and Tafel curves.Consequently,the LZTO host–separator modifier-based cell displays satisfactory rate capability(1449 and 1166 mAh·g^(−1)at 0.1 and 0.5 C)and an impressively capacity(606 mAh·g^(−1)after 500 cycles at 1 C).The coordinated strategy of host–separator modifier is supposed to have wide applications in LSBs.
基金supported by the National Natural Science Foundation of China (52203066,51973157,61904123)the Tianjin Natural Science Foundation (18JCQNJC02900)+3 种基金National innovation and entrepreneurship training program for college students (202310058007)Tianjin Municipal college students’innovation and entrepreneurship training program (202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education (Grant No.2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University。
文摘Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natural reserves,low cost of elemental sulfur,and environmentally friendly properties.However,several challenges impede its commercialization including low conductivity of sulfur itself,the severe“shuttle effect”caused by lithium polysulfides(LiPSs)during charge–discharge processes,volume expansion effects and sluggish reaction kinetics.As a solution,polar metal particles and their compounds have been introduced as the main hosts for sulfur cathode due to their robust catalytic activity and adsorption capability,effectively suppressing the“shuttle effect”of Li PSs.Bimetallic alloys and their compounds with multi-functional properties exhibit remarkable electrochemical performance more readily when compared to single-metal materials.Well-designed bimetallic materials demonstrate larger specific surface areas and richer active sites,enabling simultaneous high adsorption capability and strong catalytic properties.The synergistic effect of the“adsorption-catalysis”sites accelerates the adsorptiondiffusion-conversion process of Li PSs,ultimately achieving a long-lasting Li-S battery.Herein,the latest progress and performance of bimetallic materials in cathodes,separators,and interlayers of Li-S batteries are systematically reviewed.Firstly,the principles and challenges of Li-S batteries are briefly analyzed.Then,various mechanisms for suppressing“shuttle effects”of Li PSs are emphasized at the microscale.Subsequently,the performance parameters of various bimetallic materials are comprehensively summarized,and some improvement strategies are proposed based on these findings.Finally,the future prospects of bimetallic materials are discussed,with the hope of providing profound insights for the rational design and manufacturing of high-performance bimetallic materials for LSBs.
基金supported by the Jiangxi Province Leading Talent Project for Academic and Technical Leaders in Major Disciplines(20213BCJ22024)National Natural Science Foundation of China(22269013,22263009 and 21863006)+1 种基金Natural Science Foundation of Jiangxi Province(20224ACB213001 and 20212BBE53051)Elite Scientists Sponsorship Program by Jiangxi Association for Science and Technology(2023QT07)。
文摘Lithium-sulfur(Li-S)batteries with high theoretical specific energy are considered to be one of the highly promising next-generation energy storage systems.However,the shuttle effect of lithium polysulfides(LiPSs)and the interfacial instability of Li anodes have seriously hindered the practical application of Li-S batteries.Optimizing the electrolyte composition with additives can significantly improve the battery performance and has attracted great attention.Herein,we propose an organometallic salt,i.e.,nickel bromide dimethoxyethane(NiBr_(2)DME),as an electrolyte additive,which serves as the dual function of regulating LiPSs redox and synchronously stabilizing Li anodes.We reveal that NiBr_(2)DME can interact with LiPSs via Ni-S and Li-Br bonds,and accelerate the mutual transformation of LiPSs,thus reducing the accumulation of LiPSs in the electrolyte.In addition,NiBr_(2)DME can form a stable LiBr-containing interfacial layer on the Li metal surface,and promote the uniform electrodeposition of Li^(+)ions,and inhibit the formation of Li dendrites.Thus,Li-S batteries with a concentration of 0.5 mmol L^(-1)NiBr_(2)DME show an initial capacity of 919.8 mAh g^(-1)at 0.2 C,and a high capacity retention of 89.3%after 100 cycles.Even at the 4 C rate,a high discharge capacity of 602.9 mAh g^(-1)is achieved.Surprisingly,the good cycling performance is maintained under poor electrolyte conditions with sulfur loading of 4.8 mg cm^(-2)and electrlyte/sulfur ratio of 5µL mg^(-1).This work provides a positive solution to achieve the suppression of shuttle effect,the regulation of LiPSs redox and the stabilization of Li anodes.
文摘Under certain conditions, ultrafast pulsed laser interaction with matter leads to the formation of self-organized conical as well as periodic surface structures (commonly reffered to as, laser induced periodic surface structures, LIPSS). The purpose of the present investigations is to explore the effect of fsec laser fluence and ambient environments (Vacuum & 02) on the formation of LIPSS and conical structures on the Ti surface. The surface morphology was investigated by scanning electron microscope (SEM). The ablation threshold with single and multiple (N = 100) shots and the existence of an incubation effect was demonstrated by SEM investigations for both the vacuum and the 02 environment. The phase analysis and chemical composition of the exposed targets were performed by x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS), respectively. SEM investigations reveal the formation of LIPSS (nano & micro). FFT d-spacing calculations illustrate the dependence of periodicity on the fluence and ambient environment. The periodicity of nano-scale LIPSS is higher in the case of irradiation under vacuum conditions as compared to 02. Furthermore, the 02 environment reduces the ablation threshold. XRD data reveal that for the 02 environment, new phases (oxides of Ti) are formed. EDS analysis exhibits that after irradiation under vacuum conditions, the percentage of impurity element (A1) is reduced. The irradiation in the 02 environment results in 15% atomic diffusion of oxygen.
文摘Ultrashort pulsed laser-induced periodic surface structures(LIPSS)can be generated on difFerent kinds of materials,which are widely utilized for modifying surface properties such as wettability,adhesion,and tribological,as well as optical performances.Previous studies have focused mainly on one-dimensional LIPSS(i.e.,line structure)generation.In this study,a picosecond pulsed laser was used to irradiate stainless-steel surfaces for generating two-dimensional LIPSS,namely nanodot structures,by cross-scanning the laser beam for a different number of times.The obtained nanodot structures were found to be super hydrophilic just after laser irradiation,but turned to be hydrophobic after exposure in air for a few days.By cross・scanning the laser beam for the same number of times,local LIPSS rewriting was realized.This study showed the possibility of improving the homogeneity of the surface properties of steel materials through laser-induced nanodot structuring.
文摘The delamination of copper lead frames from epoxy molding compounds(EMC)is a severe problem for microelectronic devices,as it leads to reduced heat dissipation or circuit breakage.The micro/nanoscale surface structuring of copper is a promising method to improve the copper-EMC interfacial adhesion.In this study,the generation of micro/nano hybrid structures on copper surfaces through femtosecond pulsed laser irradiation is proposed to improve interfacial adhesion.The micro/nano hybrid structures were realized by generating nanoscale laser-induced periodic surface structures(LIPSS)on microscale parallel grooves.Several types of hybrid surface structures were generated by changing the laser polarization direction,fluence,and scanning speed.At a specific aspect ratio of microgrooves,a latticed structure was generated on the sides of microgrooves by combining LIPSS formation and direct laser interference patterning.This study provides an efficient method for the micro/nanoscale hybrid surface structure formation for interfacial adhesion improvement between copperand EMC.
文摘Femtosecond laser induced periodic surface structures(LIPSSs)are excellent biomimetic iridescent antireflective interfaces.In this work,we demonstrate the feasibility to develop tunable iridescent antireflective surfaces via simultaneous synthesis of functional metal-oxide nanomaterials,in situ deposition and hierarchical LIPSSs nanostructuring by means of femtosecond laser ablation(fs-LA)of tungsten(W)and molybdenum(Mo)in air.Adjusting the scanning interval from 1μm to 20μm allows the modulation of particle deposition rates on LIPSSs.Diminishing the scan interval enables a higher particle deposition rate,which facilitates the development of better UV-to-MIR ultrabroadband antireflective surfaces with a less pronounced iridescence.Through comparing the reflectance of hierarchical LIPSSs with different densities of loosely/tightly deposited particles,it is found that the deposited WO_(x)and MoO_(x)particle aggregates have high UV-to-MIR ultrabroadband absorbance,especially extraordinary in the MIR range.Loosely deposited particles which self-assembly into macroporous structures outperform tightly deposited particles for ultrabroadband antireflective applications.The presence of loosely deposited MoO_(x)and WO_(x)particle absorbers can cause up to 80%and 60%enhancement of antireflectance performances as compared to the tightly particle deposited LIPSSs samples.One stone of"fs-LA technique"with three birds of(particle generation,in situ deposition and LIPSS hierarchical nanostructuring)presented in this work opens up new opportunities to tune the reflectance and iridescence of metallic surfaces.
基金supported by the Key-Area Research and Development Program of Guangdong Province(2020B090919005)the National Natural Science Foundation of China(U1801257,21975056,and 22179025)。
文摘Lithium-sulfur batteries(LSBs)have a high theoretical capacity,which is considered as one of the most promising high-energy-density secondary batteries due to the double electrons reaction of sulfur.However,the shuttle effects of lithium polysulfides(Li PSs)and sluggish redox kinetics lead to their materials capacity loss and cycle stability deterioration,which restrains LSBs commercialization.Metallic compounds as additions can improve the electrochemical performance of the Li-S system,through the trap of Li PSs and accelerate the conversion of the soluble Li PSs.Among of them,the iron group elements(Fe,Ni,Co)-based compounds are the promising materials for the LSBs,due to their unique outer electronic structure and its tunable properties,low cost,abundant in the earth,environmental benignity,controllable and scalable prepared,and so on.In this review,we have made a summary for iron-based compounds to capture Li PSs according to lithium bond,sulfur bond and magnetic force.The type of iron-based compound including oxides,sulfides,nitrides,phosphides,carbides,and so on,and we have investigated the electrocatalytic mechanism of these materials.Besides,some improvement strategies are proposed,such as the engineering of the special micro/nanostructure,defect concentrations,band structures,and heterostructures.We hope to shed an in-depth light on the rationally design and fabrication of robust,commercial and stable materials for high-performance LSBs.
基金This work was supported by the National Natural Science Foundation of China(12074123,11804227,91950112)the Ministry of Science and Technology of China(Grant No.2021YFA1401100)the Foundation of‘Manufacturing beyond limits’of Shanghai.
文摘Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs have become a useful laser processing method,with broad prospects in adjusting material properties such as structural color,data storage,light absorption,and luminescence.This review discusses the formation mechanism of LIPSs,specifically the LIPS formation processes based on the pump-probe imaging method.The pulse shaping of a femtosecond laser in terms of the time/frequency,polarization,and spatial distribution is an efficient method for fabricating high-quality LIPSs.Various LIPS applications are also briefly introduced.The last part of this paper discusses the LIPS formation mechanism,as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications.
基金supported by MEXT Quantum Leap Flagship Program(MEXT Q-LEAP)Grant Number JPMXS0118067246.
文摘Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses(single-pulse mode).However,most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal.In this study,we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures(LIPSS)on silicon.It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction.In contrast,we find that the GHz burst mode femtosecond laser(wavelength:1030 nm,intra-pulse duration:220 fs,intra-pulse interval time(intra-pulse repetition rate):205 ps(4.88 GHz),burst pulse repetition rate:200 kHz)creates unique two-dimensional(2D)LIPSS.We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism.Specifically,generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS.Additionally,hydrodynamic instability including convection flow determines the final structure of 2D LIPSS.
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
基金support from the National Natural Science Foundation of China(No.22075042)Shanghai Rising-Star Program(No.22QA1400300)+3 种基金the Natural Science Foundation of Shanghai(No.20ZR1401400)the Shanghai Scientific and Technological Innovation Project(No.22520710100)the Innovation Program of Shanghai Municipal Education Commission(No.2021-01-07-00-03-E00108)the Fundamental Research Funds for the Central Universities,and the Donghua University(DHU)Distinguished Young Professor Program(No.LZB2021002).
文摘The shuttle effect induced by soluble lithium polysulfides(LiPSs)is known as one of the crucial issues that limit the practical applications of lithium-sulfur(Li-S)batteries.Herein,a titanium dioxide nanoparticle embedded in nitrogen-doped porous carbon nanofiber(TiO_(2)@NCNF)composite is constructed via an interface-induced polymerization strategy to serve as an ideal sulfur host.Under the protection of the nanofiber walls,the uniformly dispersed TiO_(2) nanocrystalline can act as capturing centers to constantly immobilize LiPSs towards durable sulfur chemistry.Besides,the mesoporous microstructure in the fibrous framework endows the TiO_(2)@NCNF host with strong physical reservation for sulfur and LiPSs,sufficient pathways for electron/ion transfer,and excellent endurance for volume change.As expected,the sulfur-loaded TiO_(2)@NCNF composite electrode presents a fabulous rate performance and long cycle lifespan(capacity fading rate of 0.062%per cycle over 500 cycles)at 2.0 C.Furthermore,the assembled Li-S batteries harvest superb areal capacity and cycling stability even under high sulfur loading and lean electrolyte conditions.