期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Irregular LIPSS produced on metals by single linearly polarized femtosecond laser 被引量:11
1
作者 Dongshi Zhang Ruijie Liu Zhuguo Li 《International Journal of Extreme Manufacturing》 SCIE EI 2022年第1期63-73,共11页
Currently,supra-wavelength periodic surface structures(SWPSS)are only achievable on silica dielectrics and silicon by femtosecond(fs)laser ablation,while triangular and rhombic laser induced periodic surface structure... Currently,supra-wavelength periodic surface structures(SWPSS)are only achievable on silica dielectrics and silicon by femtosecond(fs)laser ablation,while triangular and rhombic laser induced periodic surface structures(LIPSS)are achievable by circularly polarized or linear cross-polarized femtosecond laser.This is the first work to demonstrate the possibility of generating SWPSS on Sn and triangular and rhombic LIPSS on W,Mo,Ta,and Nb using a single linearly polarized femtosecond laser.We discovered,for the first time,SWPSS patches with each possessing its own orientation,which are completely independent of the light polarization direction,thus,breaking the traditional rules.Increasing the laser power enlarges SWPSS periods from 4–6μm to 15–25μm.We report a maximal period of 25μm,which is the largest period ever reported for SWPSS,~10 and~4 times the maximal periods(2.4μm/6.5μm)of SWPSS ever achieved by fs and ns laser ablation,respectively.The formation of triangular and rhombic LIPSS does not depend on the laser(power)or processing(scan interval and scan methodology)parameters but strongly depends on the material composition and is unachievable on other metals,such as Sn,Al,Ti,Zn,and Zr.This paper proposes and discusses possible mechanisms for molten droplet generation/spread/solidification,Marangoni convection flow for SWPSS formation,and linear-to-circular polarization transition for triangular and rhombic LIPSS formation.Reflectance and iridescence of as-prepared SWPSS and LIPSS are characterized.It was found that besides insufficient ablation on W,the iridescence density of Ta-,Mo-,Nb-LIPSS follows the sequence of melting temperatures:Ta>Mo>Nb,which indicates that the melting temperature of metals may affect the regularity of LIPSS.This work may inspire significant interest in further enriching the diversity of LIPSS and SWPSS. 展开更多
关键词 lipss SWPSS femtosecond laser antireflectance triangular lipss IRIDESCENCE rhombic lipss
下载PDF
Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring 被引量:12
2
作者 Dongshi Zhang Bikas Ranjan +1 位作者 Takuo Tanaka Koji Sugioka 《International Journal of Extreme Manufacturing》 2020年第1期135-154,共20页
In this study,we demonstrate a technique termed underwater persistent bubble assisted femtosecond laser ablation in liquids(UPB-fs-LAL)that can greatly expand the boundaries of surface micro/nanostructuring through la... In this study,we demonstrate a technique termed underwater persistent bubble assisted femtosecond laser ablation in liquids(UPB-fs-LAL)that can greatly expand the boundaries of surface micro/nanostructuring through laser ablation because of its capability to create concentric circular macrostructures with millimeter-scale tails on silicon substrates.Long-tailed macrostructures are composed of layered fan-shaped(central angles of 45°–141°)hierarchical micro/nanostructures,which are produced by fan-shaped beams refracted at the mobile bubble interface(.50°light tilt,referred to as the vertical incident direction)during UPB-fs-LAL line-by-line scanning.Marangoni flow generated during UPB-fs-LAL induces bubble movements.Fast scanning(e.g.1mms−1)allows a long bubble movement(as long as 2mm),while slow scanning(e.g.0.1mms−1)prevents bubble movements.When persistent bubbles grow considerably(e.g.hundreds of microns in diameter)due to incubation effects,they become sticky and can cause both gas-phase and liquidphase laser ablation in the central and peripheral regions of the persistent bubbles.This generates low/high/ultrahigh spatial frequency laser-induced periodic surface structures(LSFLs/HSFLs/UHSFLs)with periods of 550–900,100–200,40–100 nm,which produce complex hierarchical surface structures.A period of 40 nm,less than 1/25th of the laser wavelength(1030 nm),is the finest laser-induced periodic surface structures(LIPSS)ever created on silicon.The NIR-MIR reflectance/transmittance of fan-shaped hierarchical structures obtained by UPB-fs-LAL at a small line interval(5μm versus 10μm)is extremely low,due to both their extremely high light trapping capacity and absorbance characteristics,which are results of the structures’additional layers and much finer HSFLs.In the absence of persistent bubbles,only grooves covered with HSFLs with periods larger than 100 nm are produced,illustrating the unique attenuation abilities of laser properties(e.g.repetition rate,energy,incident angle,etc)by persistent bub 展开更多
关键词 hierarchical micro/nanostructures persistent bubble femtosecond laser surface structuring beam refraction fan-shaped microstructure lipss
下载PDF
Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS 被引量:5
3
作者 Dongshi Zhang Xinzhuo Li +3 位作者 Yao Fu Qinghe Yao Zhuguo Li Koji Sugioka 《Opto-Electronic Advances》 SCIE EI 2022年第2期1-12,共12页
Orientations of laser induced periodic surface structures(LIPSS)are usually considered to be governed by the laser polarization state.In this work,we unveil that fluid dynamics induced by femtosecond(fs)laser ablation... Orientations of laser induced periodic surface structures(LIPSS)are usually considered to be governed by the laser polarization state.In this work,we unveil that fluid dynamics induced by femtosecond(fs)laser ablation in liquid(fs-LAL)can easily break this polarization restriction to produce irregular circular-LIPSS(CLIPPS)and crisscross-LIPSS(CCLIPSS).Fs laser ablation of silicon in water shows formation of diverse LIPSS depending on ablation conditions.At a high power of 700 mW(repetition rate of 100 kHz,pulse duration of 457 fs and wavelength of 1045 nm),single/twin CLIPSS are produced at the bottom of macropores of several microns in diameter due to the formation of strong liquid vortexes and occurrence of the vortex shedding effect.Theoretical simulations validate our speculation about the formation of liquid vortex with an ultrahigh static pressure,which can induce the microstructure trenches and cracks at the sidewalls for fs-LAL of Si and tungsten(W)in water,respectively.At a low power of 50 mW,weak liquid vortexes are produced,which only give birth to curved LIPSS in the valleys of grooves.Consequently,it is deduced that liquid vortex plays a crucial role in the formation of macropores.Mountain-like microstructures induce complex fluid dynamics which can cause the formation of CCLIPSS on them.It is believed that liquid vortexes and fluid dynamics presented in this work open up new possibilities to diversify the morphologies of LIPSS formed by fs-LAL. 展开更多
关键词 circular lipss crisscross lipss laser ablation in liquid femtosecond laser ablation in water liquid vortex vortex shedding
下载PDF
Li_(2)ZnTi_(3)O_(8)as the host–separator modifier with efficient polysulfides trapping and fast Li^(+)diffusion for lithium-sulfur batteries
4
作者 Mao Qian Yakun Tang +3 位作者 Lang Liu Yue Zhang Xiaohui Li JiaJia Chen 《Nano Research》 SCIE EI CSCD 2024年第7期6087-6094,共8页
The diffusion and loss of lithium polysulfides(LiPSs)in lithium-sulfur batteries(LSBs)reduce the sulfur utilization rate and the catalytic conversion efficiency of sulfur species,resulting in early battery failure.Li_... The diffusion and loss of lithium polysulfides(LiPSs)in lithium-sulfur batteries(LSBs)reduce the sulfur utilization rate and the catalytic conversion efficiency of sulfur species,resulting in early battery failure.Li_(2)ZnTi_(3)O_(8)(LZTO),characterized by its stable spinel structure,exhibits high Li+conductivity and holds great potential as an effective adsorbent for LiPSs.This study proposes a collaborative design concept of LZTO host–separator modifier,which offers a complementary and matching approach in the cathode side,effectively addressing the challenges associated with dissolution and inadequate conversion of LiPSs.Density functional theory(DFT)calculation substantiates the pronounced chemical affinity of LZTO towards LiPSs.More importantly,the high efficiency ion transport channels are achieved in separator coating due to the presence of the LZTO particles.Furthermore,the catalytic efficacy of LZTO is validated through meticulous analysis of symmetric batteries and Tafel curves.Consequently,the LZTO host–separator modifier-based cell displays satisfactory rate capability(1449 and 1166 mAh·g^(−1)at 0.1 and 0.5 C)and an impressively capacity(606 mAh·g^(−1)after 500 cycles at 1 C).The coordinated strategy of host–separator modifier is supposed to have wide applications in LSBs. 展开更多
关键词 Li_(2)ZnTi_(3)O_(8) lithium-sulfur batteries host-separator modifier catalytic conversion diffusion and loss of lipss
原文传递
Advanced preparation and application of bimetallic materials in lithium-sulfur batteries:A review
5
作者 Yongbing Jin Nanping Deng +4 位作者 Yanan Li Hao Wang Meiling Zhang Weimin Kang Bowen Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期469-512,I0011,共45页
Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natu... Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natural reserves,low cost of elemental sulfur,and environmentally friendly properties.However,several challenges impede its commercialization including low conductivity of sulfur itself,the severe“shuttle effect”caused by lithium polysulfides(LiPSs)during charge–discharge processes,volume expansion effects and sluggish reaction kinetics.As a solution,polar metal particles and their compounds have been introduced as the main hosts for sulfur cathode due to their robust catalytic activity and adsorption capability,effectively suppressing the“shuttle effect”of Li PSs.Bimetallic alloys and their compounds with multi-functional properties exhibit remarkable electrochemical performance more readily when compared to single-metal materials.Well-designed bimetallic materials demonstrate larger specific surface areas and richer active sites,enabling simultaneous high adsorption capability and strong catalytic properties.The synergistic effect of the“adsorption-catalysis”sites accelerates the adsorptiondiffusion-conversion process of Li PSs,ultimately achieving a long-lasting Li-S battery.Herein,the latest progress and performance of bimetallic materials in cathodes,separators,and interlayers of Li-S batteries are systematically reviewed.Firstly,the principles and challenges of Li-S batteries are briefly analyzed.Then,various mechanisms for suppressing“shuttle effects”of Li PSs are emphasized at the microscale.Subsequently,the performance parameters of various bimetallic materials are comprehensively summarized,and some improvement strategies are proposed based on these findings.Finally,the future prospects of bimetallic materials are discussed,with the hope of providing profound insights for the rational design and manufacturing of high-performance bimetallic materials for LSBs. 展开更多
关键词 Bimetallic materials Lithium-sulfur batteries Effectively suppress shuttle effect of lipss Significantly improve reaction kinetics Exceptionally long lifespan
下载PDF
An organometallic salt as the electrolyte additive to regulate lithium polysulfide redox and stabilize lithium anodes for robust lithium-sulfur batteries
6
作者 Yixuan Meng Meifang Zhang +5 位作者 Youliang Wang Chen Liu Ze Zhang Ji Yu Jianxin Cai Zhenyu Yang 《Science China Materials》 SCIE EI CAS CSCD 2024年第9期2880-2888,共9页
Lithium-sulfur(Li-S)batteries with high theoretical specific energy are considered to be one of the highly promising next-generation energy storage systems.However,the shuttle effect of lithium polysulfides(LiPSs)and ... Lithium-sulfur(Li-S)batteries with high theoretical specific energy are considered to be one of the highly promising next-generation energy storage systems.However,the shuttle effect of lithium polysulfides(LiPSs)and the interfacial instability of Li anodes have seriously hindered the practical application of Li-S batteries.Optimizing the electrolyte composition with additives can significantly improve the battery performance and has attracted great attention.Herein,we propose an organometallic salt,i.e.,nickel bromide dimethoxyethane(NiBr_(2)DME),as an electrolyte additive,which serves as the dual function of regulating LiPSs redox and synchronously stabilizing Li anodes.We reveal that NiBr_(2)DME can interact with LiPSs via Ni-S and Li-Br bonds,and accelerate the mutual transformation of LiPSs,thus reducing the accumulation of LiPSs in the electrolyte.In addition,NiBr_(2)DME can form a stable LiBr-containing interfacial layer on the Li metal surface,and promote the uniform electrodeposition of Li^(+)ions,and inhibit the formation of Li dendrites.Thus,Li-S batteries with a concentration of 0.5 mmol L^(-1)NiBr_(2)DME show an initial capacity of 919.8 mAh g^(-1)at 0.2 C,and a high capacity retention of 89.3%after 100 cycles.Even at the 4 C rate,a high discharge capacity of 602.9 mAh g^(-1)is achieved.Surprisingly,the good cycling performance is maintained under poor electrolyte conditions with sulfur loading of 4.8 mg cm^(-2)and electrlyte/sulfur ratio of 5µL mg^(-1).This work provides a positive solution to achieve the suppression of shuttle effect,the regulation of LiPSs redox and the stabilization of Li anodes. 展开更多
关键词 Li-S batteries electrolyte additive nickel bromide dimethoxyethane regulating lipss redox stabilizing Li anode
原文传递
高重频飞秒激光诱导磁性镍薄膜产生LIPSS的研究
7
作者 季羽飞 王红蕊 +3 位作者 常虹 刘博文 庞冬青 胡明列 《红外与激光工程》 EI CSCD 北大核心 2024年第7期101-108,共8页
飞秒激光诱导周期性表面结构(Laser-Induced Periodic Surface Structures,LIPSS)是使用线偏振激光作用于材料时最常见的一种表面形貌,一直被研究人员广泛关注,但是在磁性薄膜上诱导产生LIPSS的研究仍相对较少,因此研究高重频飞秒激光... 飞秒激光诱导周期性表面结构(Laser-Induced Periodic Surface Structures,LIPSS)是使用线偏振激光作用于材料时最常见的一种表面形貌,一直被研究人员广泛关注,但是在磁性薄膜上诱导产生LIPSS的研究仍相对较少,因此研究高重频飞秒激光作用于磁性薄膜材料后材料磁学性质的变化是十分必要的。实验使用中心波长1030 nm、脉冲宽度300 fs、重复频率100 kHz的飞秒激光在厚度为100 nm的镍薄膜上进行线扫描,诱导产生了LIPSS。光学显微镜和电子显微镜图像显示,在高重频飞秒激光的热效应影响下,LIPSS条纹的周期测量值约为989 nm。通过X射线衍射仪和超导量子干涉仪对写有周期性LIPSS结构的样品进行测试并分析,证明了产生LIPSS过程中导致的材料原子重组并没有改变镍膜的颗粒大小和组成成分,飞秒激光作用后的磁性材料的饱和磁化强度也基本与原样保持一致,但其矫顽力发生了明显的变化,笔者认为这是由于加工过程中喷溅出的极少量反铁磁氧化镍颗粒产生的钉扎效应所导致的。 展开更多
关键词 飞秒激光精密加工 激光诱导周期性表面结构 高重频飞秒激光 磁性材料 饱和磁化强度
下载PDF
Effect of fluence and ambient environment on the surface and structural modification of femtosecond laser irradiated Ti 被引量:2
8
作者 Umm-i-Kalsoom Shazia Bashir +5 位作者 Nisar Ali M Shahid Rafique Wolfgang Husinsky Chandra S R Nathala Sergey V Makarov Narjis Begum 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期789-795,共7页
Under certain conditions, ultrafast pulsed laser interaction with matter leads to the formation of self-organized conical as well as periodic surface structures (commonly reffered to as, laser induced periodic surfac... Under certain conditions, ultrafast pulsed laser interaction with matter leads to the formation of self-organized conical as well as periodic surface structures (commonly reffered to as, laser induced periodic surface structures, LIPSS). The purpose of the present investigations is to explore the effect of fsec laser fluence and ambient environments (Vacuum & 02) on the formation of LIPSS and conical structures on the Ti surface. The surface morphology was investigated by scanning electron microscope (SEM). The ablation threshold with single and multiple (N = 100) shots and the existence of an incubation effect was demonstrated by SEM investigations for both the vacuum and the 02 environment. The phase analysis and chemical composition of the exposed targets were performed by x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS), respectively. SEM investigations reveal the formation of LIPSS (nano & micro). FFT d-spacing calculations illustrate the dependence of periodicity on the fluence and ambient environment. The periodicity of nano-scale LIPSS is higher in the case of irradiation under vacuum conditions as compared to 02. Furthermore, the 02 environment reduces the ablation threshold. XRD data reveal that for the 02 environment, new phases (oxides of Ti) are formed. EDS analysis exhibits that after irradiation under vacuum conditions, the percentage of impurity element (A1) is reduced. The irradiation in the 02 environment results in 15% atomic diffusion of oxygen. 展开更多
关键词 lipss ablation threshold incubation coefficient structural modification
下载PDF
飞秒激光直写诱导PMN-PT晶体表面LIPSS结构相变特性
9
作者 陈志翔 杨全鑫 刘洪亮 《光电工程》 CAS CSCD 北大核心 2023年第3期191-199,共9页
本文提出一种由飞秒激光直写技术诱导的基于弛豫铁电体PMN-PT晶体的表面周期结构(LIPSS),通过不同激光参数的改变,实现了LIPSS结构周期从750 nm到3μm的变化。最后,通过升高温度探究了LIPSS结构的相变特性。对比基底的相变特性,飞秒激... 本文提出一种由飞秒激光直写技术诱导的基于弛豫铁电体PMN-PT晶体的表面周期结构(LIPSS),通过不同激光参数的改变,实现了LIPSS结构周期从750 nm到3μm的变化。最后,通过升高温度探究了LIPSS结构的相变特性。对比基底的相变特性,飞秒激光诱导的LIPSS结构的居里温度有明显的降低,这一特性将会为基于PMN-PT晶体的温控调制器的制备提供新思路。 展开更多
关键词 飞秒激光直写 表面周期结构 PMN-PT晶体 相变
下载PDF
Generating Nanodot Structures on Stainless-Steel Surfaces by Cross Scanning of a Picosecond Pulsed Laser 被引量:4
10
作者 Tomoki Kobayashi Jiwang Yan 《Nanomanufacturing and Metrology》 2020年第2期105-111,共7页
Ultrashort pulsed laser-induced periodic surface structures(LIPSS)can be generated on difFerent kinds of materials,which are widely utilized for modifying surface properties such as wettability,adhesion,and tribologic... Ultrashort pulsed laser-induced periodic surface structures(LIPSS)can be generated on difFerent kinds of materials,which are widely utilized for modifying surface properties such as wettability,adhesion,and tribological,as well as optical performances.Previous studies have focused mainly on one-dimensional LIPSS(i.e.,line structure)generation.In this study,a picosecond pulsed laser was used to irradiate stainless-steel surfaces for generating two-dimensional LIPSS,namely nanodot structures,by cross-scanning the laser beam for a different number of times.The obtained nanodot structures were found to be super hydrophilic just after laser irradiation,but turned to be hydrophobic after exposure in air for a few days.By cross・scanning the laser beam for the same number of times,local LIPSS rewriting was realized.This study showed the possibility of improving the homogeneity of the surface properties of steel materials through laser-induced nanodot structuring. 展开更多
关键词 Nanodot structure Surface patterning Picosecond pulsed laser lipss Tool steel Wettability control
原文传递
Generation of micro/nano hybrid surface structures on copper by femtosecond pulsed laser irradiation 被引量:3
11
作者 Ayumi Nakajima Masaki Omiya Jiwang Yan 《Nanomanufacturing and Metrology》 EI 2022年第3期274-282,共9页
The delamination of copper lead frames from epoxy molding compounds(EMC)is a severe problem for microelectronic devices,as it leads to reduced heat dissipation or circuit breakage.The micro/nanoscale surface structuri... The delamination of copper lead frames from epoxy molding compounds(EMC)is a severe problem for microelectronic devices,as it leads to reduced heat dissipation or circuit breakage.The micro/nanoscale surface structuring of copper is a promising method to improve the copper-EMC interfacial adhesion.In this study,the generation of micro/nano hybrid structures on copper surfaces through femtosecond pulsed laser irradiation is proposed to improve interfacial adhesion.The micro/nano hybrid structures were realized by generating nanoscale laser-induced periodic surface structures(LIPSS)on microscale parallel grooves.Several types of hybrid surface structures were generated by changing the laser polarization direction,fluence,and scanning speed.At a specific aspect ratio of microgrooves,a latticed structure was generated on the sides of microgrooves by combining LIPSS formation and direct laser interference patterning.This study provides an efficient method for the micro/nanoscale hybrid surface structure formation for interfacial adhesion improvement between copperand EMC. 展开更多
关键词 Femtosecond pulsed laser COPPER Metal surface lipss Direct laser interference patterning-Micro/nano hybrid structures
原文传递
Femtosecond laser induced simultaneous functional nanomaterial synthesis,in situ deposition and hierarchical LIPSS nanostructuring for tunable antireflectance and iridescence applications 被引量:4
12
作者 Ruijie Liu Dongshi Zhang Zhuguo Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第30期179-185,共7页
Femtosecond laser induced periodic surface structures(LIPSSs)are excellent biomimetic iridescent antireflective interfaces.In this work,we demonstrate the feasibility to develop tunable iridescent antireflective surfa... Femtosecond laser induced periodic surface structures(LIPSSs)are excellent biomimetic iridescent antireflective interfaces.In this work,we demonstrate the feasibility to develop tunable iridescent antireflective surfaces via simultaneous synthesis of functional metal-oxide nanomaterials,in situ deposition and hierarchical LIPSSs nanostructuring by means of femtosecond laser ablation(fs-LA)of tungsten(W)and molybdenum(Mo)in air.Adjusting the scanning interval from 1μm to 20μm allows the modulation of particle deposition rates on LIPSSs.Diminishing the scan interval enables a higher particle deposition rate,which facilitates the development of better UV-to-MIR ultrabroadband antireflective surfaces with a less pronounced iridescence.Through comparing the reflectance of hierarchical LIPSSs with different densities of loosely/tightly deposited particles,it is found that the deposited WO_(x)and MoO_(x)particle aggregates have high UV-to-MIR ultrabroadband absorbance,especially extraordinary in the MIR range.Loosely deposited particles which self-assembly into macroporous structures outperform tightly deposited particles for ultrabroadband antireflective applications.The presence of loosely deposited MoO_(x)and WO_(x)particle absorbers can cause up to 80%and 60%enhancement of antireflectance performances as compared to the tightly particle deposited LIPSSs samples.One stone of"fs-LA technique"with three birds of(particle generation,in situ deposition and LIPSS hierarchical nanostructuring)presented in this work opens up new opportunities to tune the reflectance and iridescence of metallic surfaces. 展开更多
关键词 Broadband antireflectance Hierarchical nanostructures lipss UV-VIS-NIR-MIR IRIDESCENCE
原文传递
Iron(Fe,Ni,Co)-based transition metal compounds for lithium-sulfur batteries:Mechanism,progress and prospects 被引量:2
13
作者 Junhao Li Zhangshi Xiong +6 位作者 Yujie Wu Hao Li Xinyan Liu Hongjie Peng Yuying Zheng Qiang Zhang Quanbing Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期513-532,I0013,共21页
Lithium-sulfur batteries(LSBs)have a high theoretical capacity,which is considered as one of the most promising high-energy-density secondary batteries due to the double electrons reaction of sulfur.However,the shuttl... Lithium-sulfur batteries(LSBs)have a high theoretical capacity,which is considered as one of the most promising high-energy-density secondary batteries due to the double electrons reaction of sulfur.However,the shuttle effects of lithium polysulfides(Li PSs)and sluggish redox kinetics lead to their materials capacity loss and cycle stability deterioration,which restrains LSBs commercialization.Metallic compounds as additions can improve the electrochemical performance of the Li-S system,through the trap of Li PSs and accelerate the conversion of the soluble Li PSs.Among of them,the iron group elements(Fe,Ni,Co)-based compounds are the promising materials for the LSBs,due to their unique outer electronic structure and its tunable properties,low cost,abundant in the earth,environmental benignity,controllable and scalable prepared,and so on.In this review,we have made a summary for iron-based compounds to capture Li PSs according to lithium bond,sulfur bond and magnetic force.The type of iron-based compound including oxides,sulfides,nitrides,phosphides,carbides,and so on,and we have investigated the electrocatalytic mechanism of these materials.Besides,some improvement strategies are proposed,such as the engineering of the special micro/nanostructure,defect concentrations,band structures,and heterostructures.We hope to shed an in-depth light on the rationally design and fabrication of robust,commercial and stable materials for high-performance LSBs. 展开更多
关键词 Li-S batteries Iron-based compounds Shuttle effect Capture lipss ELECTROCATALYSIS Rational design
下载PDF
飞秒激光诱导纳米金刚石薄膜表面周期性结构的摩擦学性能研究
14
作者 崔雨潇 马家豪 +2 位作者 阎兵 戚厚军 蔡玉俊 《金刚石与磨料磨具工程》 CAS 北大核心 2022年第4期433-441,共9页
研究基于飞秒激光辐照方法在纳米金刚石(nano-crystalline diamond,NCD)薄膜表面制备的激光诱导周期性结构(laser-induced periodic surface structures,LIPSS)的摩擦学行为。在空气环境下采用脉冲宽度为200 fs,中心波长为1040 nm的掺... 研究基于飞秒激光辐照方法在纳米金刚石(nano-crystalline diamond,NCD)薄膜表面制备的激光诱导周期性结构(laser-induced periodic surface structures,LIPSS)的摩擦学行为。在空气环境下采用脉冲宽度为200 fs,中心波长为1040 nm的掺镱光子晶体光纤飞秒激光辐照NCD薄膜表面产生LIPSS。基于不同的扫描间隔制备2种LIPSS表面,即连续分布的LIPSS表面(continuously distributed LIPSS,CDL)和均匀间隔的LIPSS带状表面(evenly spaced LIPSS stripes,ESLS)。通过球盘式摩擦磨损试验机进行往复式干摩擦试验来对上述2种LIPSS表面的摩擦学性能进行表征,其中的对磨球为ZrO_(2)陶瓷材质。往复式摩擦试验采用了平行和垂直于LIPSS纹理的2种摩擦方向。研究结果表明:施加LIPSS后的NCD薄膜表面容屑能力得到改善,同时摩擦接触面积降低,因而相比于原始NCD薄膜,其摩擦系数明显降低;对于CDL表面,摩擦方向与LIPSS纹理垂直时的摩擦系数比纹理平行时的更高;ESLS表面的LIPSS纹理方向对摩擦系数无影响。 展开更多
关键词 纳米金刚石薄膜 飞秒激光辐照 激光诱导周期性表面结构 摩擦性能
下载PDF
锂硫电池中CNTs-CNFs夹层对多硫化物的捕获和加速转化机理
15
作者 陈磊 袁业辉 +1 位作者 宋瑞 张超 《天津工业大学学报》 CAS 北大核心 2024年第4期44-49,共6页
为有效抑制多硫化锂(LiPSs)的穿梭效应,通过静电纺丝、电化学沉积和化学气相生长技术在碳纳米纤维(CNFs)上垂直生长碳纳米管(CNTs),开发了一种超薄、轻质的多功能三维多层交联碳纳米纤维-碳纳米管(CNTs-CNFs)夹层,并研究CNTs-CNFs对锂... 为有效抑制多硫化锂(LiPSs)的穿梭效应,通过静电纺丝、电化学沉积和化学气相生长技术在碳纳米纤维(CNFs)上垂直生长碳纳米管(CNTs),开发了一种超薄、轻质的多功能三维多层交联碳纳米纤维-碳纳米管(CNTs-CNFs)夹层,并研究CNTs-CNFs对锂硫电池(LSBs)电化学性能的影响。研究结果表明:CNTs-CNFs薄膜优异的导电性和丰富的孔隙结构为LSBs提供了均匀的导电网络和LiPSs的吸附过滤屏障,与无夹层相比,含有CNTs-CNFs夹层的电池具有更优异的容量保持率和循环稳定性,在0.2 C电流密度下具有1296.7 mA·h/g的初始放电比容量,在100次循环后仍能提供了864.7 mA·h/g的放电比容量,容量保持率为66.68%。 展开更多
关键词 多硫化锂(lipss) 碳纳米纤维-碳纳米管(CNTs-CNFs) 夹层 三维多层交联 锂硫电池(LSBs)
下载PDF
Femtosecond laser-induced periodic structures:mechanisms, techniques, and applications 被引量:6
16
作者 Yuchan Zhang Qilin Jiang +8 位作者 Mingquan Long Ruozhong Han Kaiqiang Cao Shian Zhang Donghai Feng Tianqing Jia Zhenrong Sun Jianrong Qiu Hongxing Xu 《Opto-Electronic Science》 2022年第6期11-31,共21页
Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs hav... Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs have become a useful laser processing method,with broad prospects in adjusting material properties such as structural color,data storage,light absorption,and luminescence.This review discusses the formation mechanism of LIPSs,specifically the LIPS formation processes based on the pump-probe imaging method.The pulse shaping of a femtosecond laser in terms of the time/frequency,polarization,and spatial distribution is an efficient method for fabricating high-quality LIPSs.Various LIPS applications are also briefly introduced.The last part of this paper discusses the LIPS formation mechanism,as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications. 展开更多
关键词 laser-induced periodic structures(lipss) formation mechanisms femtosecond pulse shaping pump-probe imaging structural color birefringent effects optical absorption PHOTOLUMINESCENCE
下载PDF
Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulses 被引量:2
17
作者 Shota Kawabata Shi Bai +2 位作者 Kotaro Obata Godai Miyaji Koji Sugioka 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期212-220,共9页
Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that canno... Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses(single-pulse mode).However,most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal.In this study,we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures(LIPSS)on silicon.It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction.In contrast,we find that the GHz burst mode femtosecond laser(wavelength:1030 nm,intra-pulse duration:220 fs,intra-pulse interval time(intra-pulse repetition rate):205 ps(4.88 GHz),burst pulse repetition rate:200 kHz)creates unique two-dimensional(2D)LIPSS.We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism.Specifically,generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS.Additionally,hydrodynamic instability including convection flow determines the final structure of 2D LIPSS. 展开更多
关键词 GHz burst laser-induced periodic surface structures(lipss) surface nanostructuring 2D nanostructures
下载PDF
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
18
作者 Ruozhong Han Yuchan Zhang +6 位作者 Qilin Jiang Long Chen Kaiqiang Cao Shian Zhang Donghai Feng Zhenrong Sun Tianqing Jia 《Opto-Electronic Science》 2024年第3期33-46,共14页
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t... Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL. 展开更多
关键词 laser-induced periodic surface structures(lipss) local field enhancement collinear pump-probe imaging silicon high spatial frequency periodic structures
下载PDF
Interface-induced polymerization strategy for constructing titanium dioxide embedded carbon porous framework with enhanced chemical immobilization towards lithium polysulfides
19
作者 Yue Ouyang Xiaoxiao Li +9 位作者 Jiexin Zhu Wei Zong Yuhang Dai Xuan Gao Wei Zhang Shengyuan Yang Roohollah Bagherzadeh Feili Lai Yue-E Miao Tianxi Liu 《Nano Research》 SCIE EI CSCD 2024年第3期1473-1481,共9页
The shuttle effect induced by soluble lithium polysulfides(LiPSs)is known as one of the crucial issues that limit the practical applications of lithium-sulfur(Li-S)batteries.Herein,a titanium dioxide nanoparticle embe... The shuttle effect induced by soluble lithium polysulfides(LiPSs)is known as one of the crucial issues that limit the practical applications of lithium-sulfur(Li-S)batteries.Herein,a titanium dioxide nanoparticle embedded in nitrogen-doped porous carbon nanofiber(TiO_(2)@NCNF)composite is constructed via an interface-induced polymerization strategy to serve as an ideal sulfur host.Under the protection of the nanofiber walls,the uniformly dispersed TiO_(2) nanocrystalline can act as capturing centers to constantly immobilize LiPSs towards durable sulfur chemistry.Besides,the mesoporous microstructure in the fibrous framework endows the TiO_(2)@NCNF host with strong physical reservation for sulfur and LiPSs,sufficient pathways for electron/ion transfer,and excellent endurance for volume change.As expected,the sulfur-loaded TiO_(2)@NCNF composite electrode presents a fabulous rate performance and long cycle lifespan(capacity fading rate of 0.062%per cycle over 500 cycles)at 2.0 C.Furthermore,the assembled Li-S batteries harvest superb areal capacity and cycling stability even under high sulfur loading and lean electrolyte conditions. 展开更多
关键词 interface-induced polymerization electrospun porous nanofibers lithium-sulfur(Li-S)batteries high sulfur loading lithium polysulfides(lipss)immobilization
原文传递
扫描方向对金属和硅复合薄膜表面激光诱导自组织加工质量的影响(特邀) 被引量:1
20
作者 石理平 耿娇 仇旻 《光子学报》 EI CAS CSCD 北大核心 2023年第7期21-27,共7页
激光诱导周期性表面结构的质量可通过调整激光参数、改善材料表面和优化扫描策略等手段来提高。研究了扫描方向对线偏振激光诱导金属/硅复合薄膜表面氧化LIPSS的影响。结果表明,当扫描方向垂直于激光偏振方向时,纳米结构会出现分叉、不... 激光诱导周期性表面结构的质量可通过调整激光参数、改善材料表面和优化扫描策略等手段来提高。研究了扫描方向对线偏振激光诱导金属/硅复合薄膜表面氧化LIPSS的影响。结果表明,当扫描方向垂直于激光偏振方向时,纳米结构会出现分叉、不连续等问题;当扫描方向平行于激光偏振方向时,纳米结构呈现短程有序,但在光斑拼接处存在扭曲;而当扫描方向与激光偏振方向存在一定夹角时,容易获得长程均匀有序的周期性纳米结构。数值仿真结果表明造成这些现象的原因是近场效应对自组织过程具有不可忽略的影响。 展开更多
关键词 激光诱导周期性表面结构 表面等离激元 激光诱导化学反应 复合薄膜
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部