An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the sup...An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the super Dirac hierarchy is decomposed into two super finite-diinensional integrable Hamiltonian systems, defined over the super- symmetry manifold R^4N{2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.展开更多
A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability ...A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability for the obtained integrable family is proved. Then, Bargmann symmetry constraint of the obtained integrable family is presented by binary nonliearization method of Lax pairs and adjoint Lax pairs. Under this Bargmann symmetry constraints, an integrable symplectic map and a sequences of completely integrable finite-dimensional Hamiltonian systems in Liouville sense are worked out, and every integrable differential-difference equations in the obtained family is factored by the integrable symplectie map and a completely integrable tinite-dimensionai Hamiltonian system.展开更多
Within framework of zero curvature representation theory, a family of integrable rational semi-discrete systems is derived from a matrix spectral problem. The Hamiltonian forms of obtained semi-discrete systems are co...Within framework of zero curvature representation theory, a family of integrable rational semi-discrete systems is derived from a matrix spectral problem. The Hamiltonian forms of obtained semi-discrete systems are constructed by means of the discrete trace identity. The Liouville integrability for the obtained family is demonstrated. In the end, a reduced family of obtained semi-discrete systems and its Hamiltonian form are worked out.展开更多
By resorting to the nonlinearization approach, a Neumann constraint associated with a discrete 3 × 3 matrix eigenvalue problem is considered. A new symplectic map of the Neumann type is obtained through nonlinear...By resorting to the nonlinearization approach, a Neumann constraint associated with a discrete 3 × 3 matrix eigenvalue problem is considered. A new symplectic map of the Neumann type is obtained through nonlinearization of the discrete eigenvalue problem and its adjoint one. The generating function of integrals of motion is presented, by which the symplectic reap'is further proved to be completely integrable in the Liouville sense.展开更多
基金Project supported by the Hangdian Foundation (No. KYS075608072)the National Natural Science Foundation of China (Nos. 10671187, 10971109)the Program for New Century Excellent Talents in University of China (No. NCET-08-0515)
文摘An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the super Dirac hierarchy is decomposed into two super finite-diinensional integrable Hamiltonian systems, defined over the super- symmetry manifold R^4N{2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.
基金Supported by the Science and Technology Plan Projects of the Educational Department of Shandong Province of China under GrantNo. J08LI08
文摘A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability for the obtained integrable family is proved. Then, Bargmann symmetry constraint of the obtained integrable family is presented by binary nonliearization method of Lax pairs and adjoint Lax pairs. Under this Bargmann symmetry constraints, an integrable symplectic map and a sequences of completely integrable finite-dimensional Hamiltonian systems in Liouville sense are worked out, and every integrable differential-difference equations in the obtained family is factored by the integrable symplectie map and a completely integrable tinite-dimensionai Hamiltonian system.
基金Supported by the Science and Technology Plan Projects of the Educational Department of Shandong Province of China under Grant No. J08LI08
文摘Within framework of zero curvature representation theory, a family of integrable rational semi-discrete systems is derived from a matrix spectral problem. The Hamiltonian forms of obtained semi-discrete systems are constructed by means of the discrete trace identity. The Liouville integrability for the obtained family is demonstrated. In the end, a reduced family of obtained semi-discrete systems and its Hamiltonian form are worked out.
基金The project supported by National Natural Science Foundation of China under Grant No. 10471132 and the Special Foundation for the State Key Basic Research Program "Nonlinear Science"
文摘By resorting to the nonlinearization approach, a Neumann constraint associated with a discrete 3 × 3 matrix eigenvalue problem is considered. A new symplectic map of the Neumann type is obtained through nonlinearization of the discrete eigenvalue problem and its adjoint one. The generating function of integrals of motion is presented, by which the symplectic reap'is further proved to be completely integrable in the Liouville sense.