期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
The Bargmann Symmetry Constraint and Binary Nonlinearization of the Super Dirac Systems 被引量:7
1
作者 Jing YU Jingsong HE +1 位作者 Wenxiu MA Yi CHENG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2010年第3期361-372,共12页
An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the sup... An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the super Dirac hierarchy is decomposed into two super finite-diinensional integrable Hamiltonian systems, defined over the super- symmetry manifold R^4N{2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given. 展开更多
关键词 Symmetry constraints Binary nonlinearization Super Dirac systems Super finite-dimensional integrable Hamiltonian systems
原文传递
一类特殊Abel方程的可积条件 被引量:4
2
作者 周大勇 《湖北民族学院学报(自然科学版)》 CAS 2003年第1期13-18,共6页
通过分式线性变换u(x) =m(x)y(x) +n(x) (m(x) ,n(x) 为待定函数 ) ,将一类特殊Abel方程化为较简单的形式 ,由此判定了一些尚未解决的Abel方程的Liouville可积性 。
关键词 ABEL方程 条件 分式线变换 初等超越函数 liouville 一阶微分方程
下载PDF
Brusselator方程的不可积性 被引量:1
3
作者 王田丽 管克英 《北方交通大学学报》 CSCD 北大核心 2004年第3期12-16,共5页
依据管克英、雷锦志在IntegrabilityofSecondOrderAutonomousSystem一文中给出的二阶多项式自治系统可积的充要条件,通过复域上二元多项式函数整除定理,判定了Brussela tor方程不存在代数曲线解.进一步证明了该方程(对a>0,b>0)在L... 依据管克英、雷锦志在IntegrabilityofSecondOrderAutonomousSystem一文中给出的二阶多项式自治系统可积的充要条件,通过复域上二元多项式函数整除定理,判定了Brussela tor方程不存在代数曲线解.进一步证明了该方程(对a>0,b>0)在Liouville意义下的不可积性. 展开更多
关键词 常微分方程理论 整除定理 代数曲线解 多项式函数 liouville
下载PDF
Bargmann Symmetry Constraint for a Family of Liouville Integrable Differential-Difference Equations 被引量:1
4
作者 徐西祥 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第6期953-960,共8页
A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability ... A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability for the obtained integrable family is proved. Then, Bargmann symmetry constraint of the obtained integrable family is presented by binary nonliearization method of Lax pairs and adjoint Lax pairs. Under this Bargmann symmetry constraints, an integrable symplectic map and a sequences of completely integrable finite-dimensional Hamiltonian systems in Liouville sense are worked out, and every integrable differential-difference equations in the obtained family is factored by the integrable symplectie map and a completely integrable tinite-dimensionai Hamiltonian system. 展开更多
关键词 differential-difference equation Lax pair Hamiltonian form Binary nonliearization Bargmannsymmetry constraint integrable symplectic map
原文传递
A Family of Integrable Rational Semi-Discrete Systems and Its Reduction
5
作者 徐西祥 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第2期205-210,共6页
Within framework of zero curvature representation theory, a family of integrable rational semi-discrete systems is derived from a matrix spectral problem. The Hamiltonian forms of obtained semi-discrete systems are co... Within framework of zero curvature representation theory, a family of integrable rational semi-discrete systems is derived from a matrix spectral problem. The Hamiltonian forms of obtained semi-discrete systems are constructed by means of the discrete trace identity. The Liouville integrability for the obtained family is demonstrated. In the end, a reduced family of obtained semi-discrete systems and its Hamiltonian form are worked out. 展开更多
关键词 semi-discrete system discrete zero curvature equation Lax pair Hamiltonian form liouville integrability
下载PDF
一大类孤子方程族的Hamilton结构
6
作者 张大军 《上海大学学报(自然科学版)》 CAS CSCD 2002年第1期64-67,共4页
对具有遗传强对称递推算子的孤子方程族附以简单的条件 ,构造出了它们的 Hamilton结构、多 Hamilton结构 ,并进一步讨论了 L iouville可积性 .
关键词 孤立子 发展方程族 遗传强对称 Hamilton liouville 孤子方程族 递推算子
下载PDF
A New Integrable Symplectic Map of Neumann Type
7
作者 ZHU Jun-Yi GENG Xian-Guo 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第4期577-581,共5页
By resorting to the nonlinearization approach, a Neumann constraint associated with a discrete 3 × 3 matrix eigenvalue problem is considered. A new symplectic map of the Neumann type is obtained through nonlinear... By resorting to the nonlinearization approach, a Neumann constraint associated with a discrete 3 × 3 matrix eigenvalue problem is considered. A new symplectic map of the Neumann type is obtained through nonlinearization of the discrete eigenvalue problem and its adjoint one. The generating function of integrals of motion is presented, by which the symplectic reap'is further proved to be completely integrable in the Liouville sense. 展开更多
关键词 Neumann constraint symplectic map liouville integrablility
下载PDF
具Marta势能Hamilton系统的Liouville不可积性
8
作者 冷诗扬 杨双羚 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第3期491-494,共4页
基于Morales-Ramis理论,用理论分析的方法考虑具有Marta势能的Hamilton系统的不可积性问题,证明了该Hamilton系统在Liouville意义下是亚纯不可积的.利用该结果可从不可积性的角度了解该系统的动力学行为及拓扑结构.
关键词 Morales-Ramis理论 Marta势能 liouville
下载PDF
第一类阿贝尔方程可积性的初步研究 被引量:3
9
作者 刘靖 管克英 《北京交通大学学报》 EI CAS CSCD 北大核心 2006年第3期104-107,共4页
根据一般二阶多项式自治系统可积的充要条件,对第一类阿贝尔方程给出了目前已知的几类可积方程的积分因子所具有的特征,并给出了当积分因子限制在其中一类特征时方程系数间的关系,然后进一步证明这类方程可经线性变换化成Bernoulli方程.
关键词 阿贝尔方程liouville 广义 分因子 线变换
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部