AIM: To study the in vitro and in vivo antitumor effect of lidamycin (LDM) on hepatoma and the active moiety of its molecule.METHODS: MTT assay was used to determine the growth inhibition of human hepatoma BEL-7402 ce...AIM: To study the in vitro and in vivo antitumor effect of lidamycin (LDM) on hepatoma and the active moiety of its molecule.METHODS: MTT assay was used to determine the growth inhibition of human hepatoma BEL-7402 cells, SMMC-7721cells and mouse hepatoma H22 cells. The in vivo therapeutic effects of lidamycin and mitomycin C were determined by transplantable hepatoma 22 (H22) in mice and human hepatoma BEL-7402 xenografts in athymic mice.RESULTS: In terms of IC50values, the cytotoxicity of LDM was 10 000-fold more potent than that of mitomycin C (MMC)and adriamycin (ADM) in human hepatoma BEL-7402 cells and SMMC-7721 cells. LDM molecule consists of two moieties,an aproprotein (LDP) and an enediyne chromophore (LDC). In terms of IC50 values, the potency of LDC was similar to LDM. However, LDP was 105-fold less potent than LDM and LDC to hepatoma cells. For mouse hepatoma H22 cells, the IC50value of LDM was 0.025 nmol/L. Given by single intravenous injection at doses of 0.1, 0.05 and 0.025 mg/kg, LDM markedly suppressed the growth of hepatoma 22 in mice by 84.7%, 71.6% and 61.8%,respectively. The therapeutic indexes (TI) of LDM and MMC were 15 and 2.5, respectively. By 2 iv. Injections in two experiments, the growth inhibition rates by LDM at doses of 0.1, 0.05, 0.025, 0.00625 and 0.0125 mg/kg were 88.8-89.5%, 81.1-82.5%, 71.2-74.9%, 52.3-59.575%,and 33.3-48.3%, respectively. In comparison, MMC at doses of 5, 2.5, and 1.25 mg/kg inhibited tumor growth by 69.7-73.6%, 54.0-56.5%, and 31.5-52.2%,respectively. Moreover, in human hepatoma BEL-7402 xenografts, the growth inhibition rates by LDM at doses of 0.05 mg/kg ×2 and 0.025 mg/kg ×2 were 68.7%and 27.2%, respectively. However, MMC at the dose of 1.25 mg/kg ×2 showed an inhibition rate of 34.5%. The inhibition rate of tumor growth by LDM was higher than that by MMC at the tolerated dose.CONCLUSION: Both LDM and its chromophore LDC display extremely potent cytotoxicity to hepatoma cells. LDM shows a remarkable therapeutic efficacy against murine and human hepatoma展开更多
Objective Lidamycin (LDM) can be dissociated to an apoprotein (LDP) and an active enediyne chromophore (AE). The detached AE can reassemble with its LDP-containing fusion protein to endow the latter with potent ...Objective Lidamycin (LDM) can be dissociated to an apoprotein (LDP) and an active enediyne chromophore (AE). The detached AE can reassemble with its LDP-containing fusion protein to endow the latter with potent antitumor activity. However, the reassembly of AE with LDP is affected by several factors. Our aim was to optimize the assembly efficiency of the AE with a LDP-containing fusion protein and investigate the influence of several factors on the assembly efficacy. Methods A method based on RP-HPLC was developed to analyze the assembly rate, and an orthogonal experimental design L9 (3^4) was used to investigate the effects of temperature, assembly time, pH and molecular ratio of LDP-containing fusion protein to AE on the assembly rate. Furthermore, the determined optimum conditions for the assembly rate of the LDP-containing fusion protein with AE were applied and evaluated. Results A calibration curve based on the LDM micromolar concentration against the peak-area of AE by HPLC was obtained. The order in which individual factors in the orthogonal experiment affected the assembly rate were temperature〉time〉pH〉molar ratio of AE to protein and all were statistically significant (P〈0.01). The optimal assembly conditions were temperature at 10 ℃, time of 12 h, pH 7.0, and the molar ratio of AE: protein of 5:1. The assembly rate of AE with a LDP-containing fusion protein was improved by 23% after condition optimization. Conclusion The assembly rate of chromophore of lidamycin with its LDP-containing fusion protein was improved after condition optimization by orthogonal design, and the optimal conditions described herein should prove useful for the development of this type of LDP-containing fusion protein.展开更多
Type IV collagenase plays an important role in tumor invasion and metastasis through cleaving type IV collagen in the basement membrane and extracellular matrix. In this study a molecule-downsized immunoconjugate (Fab...Type IV collagenase plays an important role in tumor invasion and metastasis through cleaving type IV collagen in the basement membrane and extracellular matrix. In this study a molecule-downsized immunoconjugate (Fab′-LDM) was constructed by linking lidamycin (LDM), a highly potent antitumor antibiotic, to the Fab′ fragment of a monoclonal antibody directed against type IV collagenase and its antitumor effect was investigated. As assayed in 10% SDS-PAGE gel, the molecular weight of Fab′-LDM conjugate was 65 kD with a 1:1 molecular ratio of Fab′ and LDM. The Fab′-LDM conjugate maintained most part of the immunoreactivity of Fab′ fragment to both type IV collagense and mouse hepatoma 22 cells by ELISA. By MTT assay, Fab′-LDM conjugate showed more potent cytotoxicity to hepatoma 22 cells than that of LDM. Administered intravenously, Fab′-LDM conjugate proved to be more effective against the growth of subcutaneously transplanted hepatoma 22 in mice than free LDM in two experiment settings. In Experiment I, the drugs were given intravenously on day 1 and day 8. Fab′-LDM at the doses of 0.025 mg/kg, 0.05 mg/kg and 0.1 mg/kg inhibited tumor growth by 76.7%, 93.3% and 94.8%, while free LDM at 0.05 mg/kg inhibited tumor growth by 76.1%, respectively. In experiment II, the drugs were given intravenously on day 4 and day 11, Fab′-LDM at the doses of 0.025 mg/kg and 0.05 mg/kg inhibited tumor growth by 74.2%, 80.9%, while free LDM at 0.05 mg/kg inhibited tumor growth by 60.5%, respectively. In terms of survival time, Fab′-LDM was more effective than free LDM. The results suggest that the molecule-downsized immunoconjugate directed against type IV collagenase is of high efficacy in experimental cancer therapy.展开更多
基金Supported by the National High Technology Research and Development Program of China (863 program), No. 2002AA2Z3107
文摘AIM: To study the in vitro and in vivo antitumor effect of lidamycin (LDM) on hepatoma and the active moiety of its molecule.METHODS: MTT assay was used to determine the growth inhibition of human hepatoma BEL-7402 cells, SMMC-7721cells and mouse hepatoma H22 cells. The in vivo therapeutic effects of lidamycin and mitomycin C were determined by transplantable hepatoma 22 (H22) in mice and human hepatoma BEL-7402 xenografts in athymic mice.RESULTS: In terms of IC50values, the cytotoxicity of LDM was 10 000-fold more potent than that of mitomycin C (MMC)and adriamycin (ADM) in human hepatoma BEL-7402 cells and SMMC-7721 cells. LDM molecule consists of two moieties,an aproprotein (LDP) and an enediyne chromophore (LDC). In terms of IC50 values, the potency of LDC was similar to LDM. However, LDP was 105-fold less potent than LDM and LDC to hepatoma cells. For mouse hepatoma H22 cells, the IC50value of LDM was 0.025 nmol/L. Given by single intravenous injection at doses of 0.1, 0.05 and 0.025 mg/kg, LDM markedly suppressed the growth of hepatoma 22 in mice by 84.7%, 71.6% and 61.8%,respectively. The therapeutic indexes (TI) of LDM and MMC were 15 and 2.5, respectively. By 2 iv. Injections in two experiments, the growth inhibition rates by LDM at doses of 0.1, 0.05, 0.025, 0.00625 and 0.0125 mg/kg were 88.8-89.5%, 81.1-82.5%, 71.2-74.9%, 52.3-59.575%,and 33.3-48.3%, respectively. In comparison, MMC at doses of 5, 2.5, and 1.25 mg/kg inhibited tumor growth by 69.7-73.6%, 54.0-56.5%, and 31.5-52.2%,respectively. Moreover, in human hepatoma BEL-7402 xenografts, the growth inhibition rates by LDM at doses of 0.05 mg/kg ×2 and 0.025 mg/kg ×2 were 68.7%and 27.2%, respectively. However, MMC at the dose of 1.25 mg/kg ×2 showed an inhibition rate of 34.5%. The inhibition rate of tumor growth by LDM was higher than that by MMC at the tolerated dose.CONCLUSION: Both LDM and its chromophore LDC display extremely potent cytotoxicity to hepatoma cells. LDM shows a remarkable therapeutic efficacy against murine and human hepatoma
基金supported by grants from "Significant new drug development" Science and Technology Major Projects of China (2009ZX09301-003 2009ZX09401-005 2010ZX09401-407)
文摘Objective Lidamycin (LDM) can be dissociated to an apoprotein (LDP) and an active enediyne chromophore (AE). The detached AE can reassemble with its LDP-containing fusion protein to endow the latter with potent antitumor activity. However, the reassembly of AE with LDP is affected by several factors. Our aim was to optimize the assembly efficiency of the AE with a LDP-containing fusion protein and investigate the influence of several factors on the assembly efficacy. Methods A method based on RP-HPLC was developed to analyze the assembly rate, and an orthogonal experimental design L9 (3^4) was used to investigate the effects of temperature, assembly time, pH and molecular ratio of LDP-containing fusion protein to AE on the assembly rate. Furthermore, the determined optimum conditions for the assembly rate of the LDP-containing fusion protein with AE were applied and evaluated. Results A calibration curve based on the LDM micromolar concentration against the peak-area of AE by HPLC was obtained. The order in which individual factors in the orthogonal experiment affected the assembly rate were temperature〉time〉pH〉molar ratio of AE to protein and all were statistically significant (P〈0.01). The optimal assembly conditions were temperature at 10 ℃, time of 12 h, pH 7.0, and the molar ratio of AE: protein of 5:1. The assembly rate of AE with a LDP-containing fusion protein was improved by 23% after condition optimization. Conclusion The assembly rate of chromophore of lidamycin with its LDP-containing fusion protein was improved after condition optimization by orthogonal design, and the optimal conditions described herein should prove useful for the development of this type of LDP-containing fusion protein.
文摘Type IV collagenase plays an important role in tumor invasion and metastasis through cleaving type IV collagen in the basement membrane and extracellular matrix. In this study a molecule-downsized immunoconjugate (Fab′-LDM) was constructed by linking lidamycin (LDM), a highly potent antitumor antibiotic, to the Fab′ fragment of a monoclonal antibody directed against type IV collagenase and its antitumor effect was investigated. As assayed in 10% SDS-PAGE gel, the molecular weight of Fab′-LDM conjugate was 65 kD with a 1:1 molecular ratio of Fab′ and LDM. The Fab′-LDM conjugate maintained most part of the immunoreactivity of Fab′ fragment to both type IV collagense and mouse hepatoma 22 cells by ELISA. By MTT assay, Fab′-LDM conjugate showed more potent cytotoxicity to hepatoma 22 cells than that of LDM. Administered intravenously, Fab′-LDM conjugate proved to be more effective against the growth of subcutaneously transplanted hepatoma 22 in mice than free LDM in two experiment settings. In Experiment I, the drugs were given intravenously on day 1 and day 8. Fab′-LDM at the doses of 0.025 mg/kg, 0.05 mg/kg and 0.1 mg/kg inhibited tumor growth by 76.7%, 93.3% and 94.8%, while free LDM at 0.05 mg/kg inhibited tumor growth by 76.1%, respectively. In experiment II, the drugs were given intravenously on day 4 and day 11, Fab′-LDM at the doses of 0.025 mg/kg and 0.05 mg/kg inhibited tumor growth by 74.2%, 80.9%, while free LDM at 0.05 mg/kg inhibited tumor growth by 60.5%, respectively. In terms of survival time, Fab′-LDM was more effective than free LDM. The results suggest that the molecule-downsized immunoconjugate directed against type IV collagenase is of high efficacy in experimental cancer therapy.
基金This study was supported by a grant from China State Key Basic Research Project(G1998051212)a grant from National Foundation for Cancer Research,USA.
文摘目的 研究力达霉素 (lidamycin,L DM)对内皮细胞的增殖抑制作用和诱导细胞凋亡作用。方法 用 MTT测定法和[3H]胸苷掺入测定法观察 L DM对内皮细胞的增殖抑制 ;用流式细胞分析、形态观察、蛋白质印迹分析等方法研究 L DM诱导内皮细胞凋亡及对相关调节蛋白的影响。结果 L DM呈浓度依赖性抑制内皮细胞增殖和诱导内皮细胞凋亡。L DM浓度 1~ 10 nmol/L可将内皮细胞阻断在 G2 /M期。L DM可导致内皮细胞中的游离钙增高 ,可使 Bc1-2和 PCNA蛋白的表达下调 ,但对 Bax蛋白的表达无影响。结论 力达霉素抑制内皮细胞增殖与诱导内皮细胞凋亡 。