Photosystem I(PSI)is one of the two photosystems in photosynthesis,and performs a series of electron transfer reactions leading to the reduction of ferredoxin.In higher plants,PSI is surrounded by four light-harvestin...Photosystem I(PSI)is one of the two photosystems in photosynthesis,and performs a series of electron transfer reactions leading to the reduction of ferredoxin.In higher plants,PSI is surrounded by four light-harvesting complex I(LHCI)subunits,which harvest and transfer energy efficiently to the PSI core.The crystal structure of PSI-LHCI supercomplex has been analyzed up to 2.6Åresolution,providing much information on the arrangement of proteins and cofactors in this complicated supercomplex.Here we have optimized crystallization conditions,and analyzed the crystal structure of PSI-LHCI at 2.4Åresolution.Our structure showed some shift of the LHCI,especially the Lhca4 subunit,away from the PSI core,suggesting the indirect connection and inefficiency of energy transfer from this Lhca subunit to the PSI core.We identified five new lipids in the structure,most of them are located in the gap region between the Lhca subunits and the PSI core.These lipid molecules may play important roles in binding of the Lhca subunits to the core,as well as in the assembly of the supercomplex.The present results thus provide novel information for the elucidation of the mechanisms for the light-energy harvesting,transfer and assembly of this supercomplex.展开更多
Photosynthetic efficiency is the primary determinant of crop yield,including vegetative biomass and grain yield.Manipulation of key transcription factors known to directly control photosynthetic machinery can be an ef...Photosynthetic efficiency is the primary determinant of crop yield,including vegetative biomass and grain yield.Manipulation of key transcription factors known to directly control photosynthetic machinery can be an effective strategy to improve photosynthetic traits.In this study,we identified an Arabidopsis gain-of-function mutant,cogwheel1-3D,that shows a significantly enlarged rosette and increased biomass compared with wild-type plants.Overexpression of COG1,a Dof transcription factor,recapitulated the phenotype of cogwheel1-3D,whereas knocking out COG1 and its six paralogs resulted in a reduced rosette size and decreased biomass.Transcriptomic and quantitative reverse transcription polymerase chain reaction analyses demonstrated that COG1 and its paralogs were required for light-induced expression of genes involved in photosynthesis.Further chromatin immunoprecipitation and electrophoretic mobility shift assays indicated that COG1 can directly bind to the promoter regions of multiple genes encoding light-harvesting antenna proteins.Physiological,biochemical,and microscopy analyses revealed that COG1 enhances photosynthetic capacity and starch accumulation in Arabidopsis rosette leaves.Furthermore,combined results of bioinformatic,genetic,and molecular experiments suggested that the functions of COG1 in increasing biomass are conserved in different plant species.These results collectively demonstrated that COG1 acts as a key regulator of plant biomass by promoting photosynthesis and starch accumulation.Manipulating COG1 to optimize photosynthetic capacity would create new strategies for future crop yield improvement.展开更多
Photosynthesis includes the collection of light and a/b-binding (LHC) proteins. In high plants, the LHC gene family constituting the light-harvesting complex ofphotosystems I and II. the transfer of solar energy usi...Photosynthesis includes the collection of light and a/b-binding (LHC) proteins. In high plants, the LHC gene family constituting the light-harvesting complex ofphotosystems I and II. the transfer of solar energy using light-harvesting chlorophyll includes LHCA and LHCB sub-families, which encode proteins Zostera marina L. is a monocotyledonous angiosperm and inhab- its submerged marine environments rather than land environments. We characterized the Lhca and Lhcb gene families of Z. marina from the expressed sequence tags (EST) database. In total, 13 unigenes were annotated as ZmLhc, 6 in Lhca family and 7 in ZmLhcb family. ZmLHCA and ZmLHCB contained the conservative LHC motifs and amino acid residues binding chlorophyll. The average similarity among mature ZmLHCA and ZmLHCB was 48.91% and 48.66%, respectively, which indicated a high degree of diver- gence within ZmLHChc gene family. The reconstructed phylogenetic tree showed that the tree topology and phylogenetic relation- ship were similar to those reported in other high plants, suggesting that the Lhc genes were highly conservative and the classification of ZmLhc genes was consistent with the evolutionary position of Z. marina. Real-time reverse transcription (RT) PCR analysis showed that different members of ZmLhca and ZmLhcb responded to a stress in different expression patterns. Salinity, temperature, light intensity and light quality may affect the expression of most ZmLhca and ZmLhcb genes. Inorganic carbon concentration and acidity had no obvious effect on ZmLhca and ZmLhcb gene expression, except for ZmLhca6.展开更多
基金supported by the National Key Research and Development Program of China(2017YFA0503700)the Chinese Academy of Sciences Key Research Program of Frontier Sciences(QYZDY-SSW-SMC003)+5 种基金a Strategic Priority Research Program of CAS(XDB17000000)a National Basic Research Program of China(2015CB150100)the National Natural Science Foundation of China(31622007,31670237,32070267)the Youth Innovation Promotion Association of CAS(2020081)Taishan Scholars Project,Jinan Science and Technology Project(2020GXRC058)the Natural Science Foundation of Shandong Province China(ZR2019ZD48).
文摘Photosystem I(PSI)is one of the two photosystems in photosynthesis,and performs a series of electron transfer reactions leading to the reduction of ferredoxin.In higher plants,PSI is surrounded by four light-harvesting complex I(LHCI)subunits,which harvest and transfer energy efficiently to the PSI core.The crystal structure of PSI-LHCI supercomplex has been analyzed up to 2.6Åresolution,providing much information on the arrangement of proteins and cofactors in this complicated supercomplex.Here we have optimized crystallization conditions,and analyzed the crystal structure of PSI-LHCI at 2.4Åresolution.Our structure showed some shift of the LHCI,especially the Lhca4 subunit,away from the PSI core,suggesting the indirect connection and inefficiency of energy transfer from this Lhca subunit to the PSI core.We identified five new lipids in the structure,most of them are located in the gap region between the Lhca subunits and the PSI core.These lipid molecules may play important roles in binding of the Lhca subunits to the core,as well as in the assembly of the supercomplex.The present results thus provide novel information for the elucidation of the mechanisms for the light-energy harvesting,transfer and assembly of this supercomplex.
基金supported in part by the National Natural Science Foundation of China(32270341,31700245,and 32030005)the Natural Science Foundation for Distinguished Young Scholars of Gansu Province(20JR5RA306)+2 种基金the Postdoctoral Research Foundation of China(2018T111116 and 2016M602889)the Programme of Introducing Talents of Discipline to Universities(B16022)the Fundamental Research Funds for the Central Universities(lzujbky-2020-32 and lzujbky-2022-kb03).
文摘Photosynthetic efficiency is the primary determinant of crop yield,including vegetative biomass and grain yield.Manipulation of key transcription factors known to directly control photosynthetic machinery can be an effective strategy to improve photosynthetic traits.In this study,we identified an Arabidopsis gain-of-function mutant,cogwheel1-3D,that shows a significantly enlarged rosette and increased biomass compared with wild-type plants.Overexpression of COG1,a Dof transcription factor,recapitulated the phenotype of cogwheel1-3D,whereas knocking out COG1 and its six paralogs resulted in a reduced rosette size and decreased biomass.Transcriptomic and quantitative reverse transcription polymerase chain reaction analyses demonstrated that COG1 and its paralogs were required for light-induced expression of genes involved in photosynthesis.Further chromatin immunoprecipitation and electrophoretic mobility shift assays indicated that COG1 can directly bind to the promoter regions of multiple genes encoding light-harvesting antenna proteins.Physiological,biochemical,and microscopy analyses revealed that COG1 enhances photosynthetic capacity and starch accumulation in Arabidopsis rosette leaves.Furthermore,combined results of bioinformatic,genetic,and molecular experiments suggested that the functions of COG1 in increasing biomass are conserved in different plant species.These results collectively demonstrated that COG1 acts as a key regulator of plant biomass by promoting photosynthesis and starch accumulation.Manipulating COG1 to optimize photosynthetic capacity would create new strategies for future crop yield improvement.
基金supported by the Key Science and Technology Program of Shandong Province (Grant no.2012GHY11527)the Public Science and Technology Research Funds Projects of Ocean,State Oceanic Administration of China (Grant no.201105021)
文摘Photosynthesis includes the collection of light and a/b-binding (LHC) proteins. In high plants, the LHC gene family constituting the light-harvesting complex ofphotosystems I and II. the transfer of solar energy using light-harvesting chlorophyll includes LHCA and LHCB sub-families, which encode proteins Zostera marina L. is a monocotyledonous angiosperm and inhab- its submerged marine environments rather than land environments. We characterized the Lhca and Lhcb gene families of Z. marina from the expressed sequence tags (EST) database. In total, 13 unigenes were annotated as ZmLhc, 6 in Lhca family and 7 in ZmLhcb family. ZmLHCA and ZmLHCB contained the conservative LHC motifs and amino acid residues binding chlorophyll. The average similarity among mature ZmLHCA and ZmLHCB was 48.91% and 48.66%, respectively, which indicated a high degree of diver- gence within ZmLHChc gene family. The reconstructed phylogenetic tree showed that the tree topology and phylogenetic relation- ship were similar to those reported in other high plants, suggesting that the Lhc genes were highly conservative and the classification of ZmLhc genes was consistent with the evolutionary position of Z. marina. Real-time reverse transcription (RT) PCR analysis showed that different members of ZmLhca and ZmLhcb responded to a stress in different expression patterns. Salinity, temperature, light intensity and light quality may affect the expression of most ZmLhca and ZmLhcb genes. Inorganic carbon concentration and acidity had no obvious effect on ZmLhca and ZmLhcb gene expression, except for ZmLhca6.