BACKGROUND:Hepatic fibrosis is a necessary step in the development of hepatic cirrhosis.In this study we used lentiviral vector-mediated transfection technology to evaluate the effect of peroxisome proliferator-activa...BACKGROUND:Hepatic fibrosis is a necessary step in the development of hepatic cirrhosis.In this study we used lentiviral vector-mediated transfection technology to evaluate the effect of peroxisome proliferator-activated receptor gamma(PPAR-γ) on rat hepatic fibrosis. METHODS:Hepatic fibrosis in rats was induced by CCl4 for 2 weeks(early fibrosis)and 8 weeks(sustained fibrosis).The rats were randomly divided into four groups:normal control, fibrosis,blank vector,and PPAR-γ.They were infected with the recombinant lentiviral expression vector carrying the rat PPAR-γgene by portal vein injection.The liver of the rats was examined histologically and hydroxyproline was assessed.In vitro primary hepatic stellate cells(HSCs)were infected with the recombinant lentiviral expression vector carrying the rat PPAR-γgene.The status of HSC proliferation was measured by the MTT assay.The protein levels of PPAR-γ,α-smooth muscle actin(α-SMA)and type I collagen expression were evaluated by the Western blotting method. RESULTS:In vitro studies revealed that expression of PPAR-γ inhibited expression ofα-SMA and type I collagen in activated HSCs(P<0.01)as well as HSC proliferation(P<0.01).In vivo experiments indicated that in the early hepatic fibrosis group,the hydroxyproline content and the level of collagen I protein in the liver in the PPAR-γtransfected group were not significantly different compared to the hepatic fibrosis group and the blank vector group;whereas the expressions of PPAR-γ andα-SMA were different compared to the hepatic fibrosis group(P<0.01).In the sustained hepatic fibrosis group,there were significant differences in the hydroxyproline content and the expression of PPAR-γ,α-SMA,and type I collagen between each group.CONCLUSION:PPAR-γcan inhibit HSC proliferation and hepatic fibrosis,and suppressα-SMA and type I collagen expression.展开更多
AIM: To evaluate the influence of E2F-1 on the growth of human gastric cancer(GC) cells in vivo and the mechanism involved. METHODS: E2F-1 recombinant lentiviral vectors were injected into xenograft tumors of MGC-803 ...AIM: To evaluate the influence of E2F-1 on the growth of human gastric cancer(GC) cells in vivo and the mechanism involved. METHODS: E2F-1 recombinant lentiviral vectors were injected into xenograft tumors of MGC-803 cells in nude mice, and then tumor growth was investigated. Overexpression of transcription factor E2F-1 was assessed by reverse transcription-polymerase chain reaction(RT-PCR) and Western blotting analysis. Apoptosis rates were determined using a terminal deoxynucleotidyl transferase-mediated d UTP-biotin nick end labeling(TUNEL) assay. Expression levels of certain cell cycle regulators and apoptosis-related proteins, such as Bax, survivin, Bcl-2, cyclin D1, S-phase kinaseassociated protein 2, and c-Myc were examined by Western blotting and RT-PCR. RESULTS: Xenograft tumors of MGC-803 cells in nude mice injected with E2F-1 recombinant lentiviral vectors stably overexpressed the E2F-1 gene as measured by semi-quantitative RT-PCR(relative m RNA expression: 0.10 ± 0.02 vs 0.05 ± 0.02 for control vector and 0.06 ± 0.03 for no infection; both P < 0.01) and Western blotting(relative protein expression: 1.90 ± 0.05 vs 1.10 ± 0.03 in control vector infected and 1.11 ± 0.02 for no infection; both P < 0.01). The growth-curve of tumor volumes revealed that infection with E2F-1 recombinant lentiviral vectors significantly inhibited the growth of human GC xenografts(2.81 ± 1.02 vs 6.18 ± 1.15 in control vector infected and 5.87 ± 1.23 with no infection; both P < 0.05) at 15 d after treatment. TUNEL analysis demonstrated that E2F-1 overexpression promoted tumor cell apoptosis(18.6% ± 2.3% vs 6.7% ± 1.2% in control vector infected 6.3% ± 1.2% for no infection; both P < 0.05). Furthermore, lentiviral vector-mediated E2F-1 overexpression increased theexpression of Bax and suppressed survivin, Bcl-2, cyclin D1, Skp2, and c-Myc expression in tumor tissue.CONCLUSION: E2F-1 inhibits growth of GC cells via regulating multiple signaling pathways, and may play an important role in targeted therapy for GC.展开更多
This study investigated the effects of miRNA-155 on malignant biological characteristics of NK/T-cell lymphoma cell lines and the possible mechanism. The expression of miRNA-155 was detected in lymphoma cell lines fro...This study investigated the effects of miRNA-155 on malignant biological characteristics of NK/T-cell lymphoma cell lines and the possible mechanism. The expression of miRNA-155 was detected in lymphoma cell lines from different sources (SNK-6, YTS, Jurkat and DOHH2) by real-time PCR. Lentiviral vectors (pLL3.7) that could overexpress or downexpress miRNA-155 were constructed. Recombinant lentiviral particles were prepared and purified, and their titers determined. The expression of miRNA-155 in the infected SNK-6 cells and the cell proliferation were detected by PCR and CCK-8, respectively. Flow cytometry was used to determine the apoptosis of infected SNK-6 cells. The target of miRNA155 was predicted from Targetscan website. The effect of miRNA155 on FOXO3a expression was examined by Western blotting. The results showed that among the human NK/T-cell lymphoma cell lines SNK-6, YTS, Jurkat and DOHH2, the expression of miRNA-155 was highest in SNK-6. The infection efficiency of the recombinant lentivirns in SNK-6 was more than 70% at multiplicity of infection (MOI) of 100. The expression of miRNA-155 was significantly increased in SNK-6 cells infected by lentivirus vectors with high expression of miRNA-155 (4 times higher than the control group), and profoundly decreased in those infected with lentivirnses with low expression of miRNA-155. The proliferation of letivirns-infected SNK-6 cells was decreased as the expression of miRNA-155 reduced. The apoptosis rate was increased with the reduction in the expression of miRNA-155. FOXO3a was found to be a possible target of miRNA155, as suggested by Targetscan website. Western blotting showed that the expression of FOXO3a was significantly elevated in SNK-6 cells with miRNA-155 inhibition. It was concluded that reduction in miRNA-155 expression can inhibit the proliferation of SNK-6 lymphoma cells and promote their apoptosis, which may be associated with regulation of FOXO3a gene.展开更多
Cavernous nerve injury is the main cause of erectile dysfunction following radical prostatectomy.The recovery of erectile function following radical prostatectomy remains challenging.Our previous studies found that in...Cavernous nerve injury is the main cause of erectile dysfunction following radical prostatectomy.The recovery of erectile function following radical prostatectomy remains challenging.Our previous studies found that injecting adipose-derived stem cells(ADSCs)into the cavernosa could repair the damaged cavernous nerves,but the erectile function of the treated rats could not be restored to a normal level.We evaluated the efficacy of ADSCs infected with a lentiviral vector encoding rat brain-derived neurotrophic factor(lenti-rBDNF)in a rat model of cavernous nerve injury.The rats were equally and randomly divided into four groups.In the control group,bilateral cavernous nerves were isolated but not injured.In the bilateral cavernous nerve injury group,bilateral cavernous nerves were isolated and injured with a hemostat clamp for 2 minutes.In the ADSCGFP and ADSCrBDNF groups,after injury with a hemostat clamp for 2 minutes,rats were injected with ADSCs infected with lenti-GFP(1×106 in 20μL)and lenti-rBDNF(1×106 in 20μL),respectively.Erectile function was assessed 4 weeks after injury by measuring intracavernosal pressures.Then,penile tissues were collected for histological detection and western blot assay.Results demonstrated that compared with the bilateral cavernous nerve injury group,erectile function was significantly recovered in the ADSCGFP and ADSCrBDNF groups,and to a greater degree in the ADSCrBDNF group.Neuronal nitric oxide synthase content in the dorsal nerves and the ratio of smooth muscle/collagen were significantly higher in the ADSCrBDNF and ADSCGFP groups than in the bilateral cavernous nerve injury group.Neuronal nitric oxide synthase expression was obviously higher in the ADSCrBDNF group than in the ADSCGFP group.These findings confirm that intracavernous injection with ADSCs infected with lenti-rBDNF can effectively improve erectile dysfunction caused by cavernous nerve injury.This study was approved by the Medical Animal Care and Welfare Committee of Wuhan University,China(approval No.2017-163展开更多
AIM: To explore the effect of ciliary neurotrophic factor (CNTF) on retinal ganglion cell (RGC)-5 induced by hydrogen peroxide (H2O2). METHODS: After cell adherence, RGC-5 culture medium was changed to contai...AIM: To explore the effect of ciliary neurotrophic factor (CNTF) on retinal ganglion cell (RGC)-5 induced by hydrogen peroxide (H2O2). METHODS: After cell adherence, RGC-5 culture medium was changed to contain different concentrations of H2O2 from 50 to 150 μmol/L at four time points (0.5, 1, 1.5 and 2h) to select the concentration and time point for H2O2 induced model. Two different ways of interventions for injured RGC-5 cells respectively were CNTF as an addition in the culture medium or recombinant lentiviral plasmid carrying CNTF gene transfecting bone mesenchymal stem cells (BMSCs) for co-culture with RGC-5. RESULTS: Compared to the control group, H2O2 led to RGC-5 death closely associated with concentrations and action time of H2O2 and we chose 125 μmol/L and 2h to establish the H2O2-induced model. While CNTF inhibited the loss of RGC-5 cells obviously with a dose-dependent survival rate. Nevertheless two administration routes had different survival rate yet higher rate in recombinant lentiviral plasmid group but there were no statistically significant differences. CONCLUSION: Both the two administration routes of CNTF have effects on RGC-5 cells induced by H2O2. If their own advantages were combined, there may be a better administration route.展开更多
In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein...In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein in bladder cancer(BC)carcinogenesis.Lentiviral vectors were used to achieve silencing or overexpression of TM9SF1 gene in three BC cell lines.These cell lines were then subject to cell counting kit 8,wound-healing assay,transwell assay,and flow cytometry.Proliferation,migration,and invasion of BC cells were increased in cell lines subjected to TM9SF1 overexpression.TM9SF1 silencing inhibited proliferation,migration and invasion of BC cells.The authors conclude that TM9SF1 may be an oncogene in bladder cancer pathogenesis.展开更多
This was a single-arm,multicenter,open-label phase I trial.Lentiviral vectors(LV)carrying the ABCD1 gene(LV-ABCD1)was directly injected into the brain of patients with childhood cerebral adrenoleukodystrophy(CCALD),an...This was a single-arm,multicenter,open-label phase I trial.Lentiviral vectors(LV)carrying the ABCD1 gene(LV-ABCD1)was directly injected into the brain of patients with childhood cerebral adrenoleukodystrophy(CCALD),and multi-site injection was performed.The injection dose increased from 200 to 1600 lL(vector titer:1×10^(9) transduction units per mL(TU/mL)),and the average dose per kilogram body weight ranges from 8 to 63.6 lL/kg.The primary endpoint was safety,dose-exploration and immunogenicity and the secondary endpoint was initial evaluation of efficacy and the expression of ABCD1 protein.A total of 7 patients participated in this phase I study and were followed for 1 year.No injectionrelated serious adverse event or death occurred.Common adverse events associated with the injection were irritability(71%,5/7)and fever(37.2-38.5℃,57%,4/7).Adverse events were mild and selflimited,or resolved within 3 d of symptomatic treatment.The maximal tolerable dose is 1600 lL.In 5 cases(83.3%,5/6),no lentivirus associated antibodies were detected.The overall survival at 1-year was 100%.The ABCD1 protein expression was detected in neutrophils,monocytes and lymphocytes.This study suggests that the intracerebral injection of LV-ABCD1 for CCALD is safe and can achieve successful LV transduction in vivo;even the maximal dose did not increase the risk of adverse events.Furthermore,the direct LV-ABCD1 injection displayed low immunogenicity.In addition,the effectiveness of intracerebral LV-ABCD1 injection has been preliminarily demonstrated while further investigation is needed.This study has been registered in the Chinese Clinical Trial Registry(https://www.chictr.org.cn/,registration number:ChiCTR1900026649).展开更多
Lentiviral vectors(LVs), derived from human immunodeficiency virus, are powerful tools for modifying the genes of eukaryotic cells such as hematopoietic stem cells and neural cells. With the extensive and in-depth stu...Lentiviral vectors(LVs), derived from human immunodeficiency virus, are powerful tools for modifying the genes of eukaryotic cells such as hematopoietic stem cells and neural cells. With the extensive and in-depth studies on this gene therapy vehicle over the past two decades, LVs have been widely used in both research and clinical trials. For instance, third-generation and selfinactive LVs have been used to introduce a gene with therapeutic potential into the host genome and achieve targeted delivery into specific tissue. When LVs are employed in leukemia, the transduced T cells recognize and kill the tumor B cells;in β-thalassemia, the transduced CD34^(+) cells express normal β-globin;in adenosine deaminase-deficient severe combined immunodeficiency, the autologous CD34^(+) cells express adenosine deaminase and realize immune reconstitution. Overall, LVs can perform significant roles in the treatment of primary immunodeficiency diseases, hemoglobinopathies, B cell leukemia, and neurodegenerative diseases. In this review, we discuss the recent developments and therapeutic applications of LVs. The safe and efficient LVs show great promise as a tool for human gene therapy.展开更多
Exosomes derived from bone marrow mesenchymal stem cells can inhibit neuroinflammation through regulating microglial phenotypes and promoting nerve injury repair.However,the underlying molecular mechanism remains uncl...Exosomes derived from bone marrow mesenchymal stem cells can inhibit neuroinflammation through regulating microglial phenotypes and promoting nerve injury repair.However,the underlying molecular mechanism remains unclear.In this study,we investigated the mechanism by which exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation.Our in vitro co-culture experiments showed that bone marrow mesenchymal stem cells and their exosomes promoted the polarization of activated BV2 microglia to their anti-inflammatory phenotype,inhibited the expression of proinflammatory cytokines,and increased the expression of anti-inflammatory cytokines.Our in vivo experiments showed that tail vein injection of exosomes reduced cell apoptosis in cortical tissue of mouse models of traumatic brain injury,inhibited neuroinflammation,and promoted the transformation of microglia to the anti-inflammatory phenotype.We screened some microRNAs related to neuroinflammation using microRNA sequencing and found that microRNA-181b seemed to be actively involved in the process.Finally,we regulated the expression of miR181b in the brain tissue of mouse models of traumatic brain injury using lentiviral transfection.We found that miR181b overexpression effectively reduced apoptosis and neuroinflamatory response after traumatic brain injury and promoted the transformation of microglia to the anti-inflammatory phenotype.The interleukin 10/STAT3 pathway was activated during this process.These findings suggest that the inhibitory effects of exosomes derived from bone marrow mesenchymal stem cells on neuroinflamation after traumatic brain injury may be realized by the action of miR181b on the interleukin 10/STAT3 pathway.展开更多
We previously demonstrated that overexpression of tropomyosin receptor kinase A(TrkA)promotes the survival and Schwann celllike differentiation of bone marrow stromal stem cells in nerve grafts,thereby enhancing the r...We previously demonstrated that overexpression of tropomyosin receptor kinase A(TrkA)promotes the survival and Schwann celllike differentiation of bone marrow stromal stem cells in nerve grafts,thereby enhancing the regeneration and functional recovery of the peripheral nerve.In the present study,we investigated the molecular mechanisms underlying the neuroprotective effects of TrkA in bone marrow stromal stem cells seeded into nerve grafts.Bone marrow stromal stem cells from Sprague-Dawley rats were infected with recombinant lentivirus vector expressing rat TrkA,TrkA-shRNA or the respective control.The cells were then seeded into allogeneic rat acellular nerve allografts for bridging a 1-cm right sciatic nerve defect.Then,8 weeks after surgery,hematoxylin and eosin staining showed that compared with the control groups,the cells and fibers in the TrkA overexpressing group were more densely and uniformly arranged,whereas they were relatively sparse and arranged in a disordered manner in the TrkA-shRNA group.Western blot assay showed that compared with the control groups,the TrkA overexpressing group had higher expression of the myelin marker,myelin basic protein and the axonal marker neurofilament 200.The TrkA overexpressing group also had higher levels of various signaling molecules,including TrkA,pTrkA(Tyr490),extracellular signal-regulated kinases 1/2(Erkl/2),pErk1/2(Thr202/Tyr204),and the anti-apoptotic proteins Bcl-2 and Bcl-xL.In contrast,these proteins were downregulated,while the pro-apoptotic factors Bax and Bad were upregulated,in the TrkA-shRNA group.The levels of the TrkA effectors Akt and pAkt(Ser473)were not different among the groups.These results suggest that TrkA enhances the survival and regenerative capacity of bone marrow stromal stem cells through upregulation of the Erk/Bcl-2 pathway.All procedures were approved by the Animal Ethical and Welfare Committee of Shenzhen University,China in December 2014(approval No.AEWC-2014-001219).展开更多
This study examined the differentiation character and pluripotency of mesenchymal stem cells (MSCs) under different conditions. Adult MSCs were initially isolated from the bone marrow of rats, cultured in vitro and id...This study examined the differentiation character and pluripotency of mesenchymal stem cells (MSCs) under different conditions. Adult MSCs were initially isolated from the bone marrow of rats, cultured in vitro and identified by flow cytometry. After MSCs were transferred to osteogenic and adipogenic medium respectively, the morphological characterization of induced cells was observed. The expression of marker genes was detected by RT-PCR analysis. Then MSCs were transfected with lenti- viral vectors pGC-FU-Sox9-EGFP. Enhanced green fluorescence protein (EGFP) expression and trans- fection efficiency were determined by fluorescence microscopy. The results demonstrated that EGFP caused no effect on the multilineage potential of adult MSCs. Sox9 gene expression of high level was maintained stable in the transfected MSCs and induced MSCs to differentiate into chondrocytes. Ag- gracan was positive in chondrogenic lineages and the expression of aggracan and type Ⅱ collagenwas significantly increased during MSCs chondrogenic differentiation. It was concluded that Sox9 gene-modified adult MSCs may be promising candidate cells for further studies on tissue engineering. EGFP facilitates the research on MSCs physiological behavior and application in tissue engineering during differentiation both in vitro and in vivo.展开更多
AIM: To investigate the targeted inhibition of proliferation and migration of SW620 human colon cancer cells by upregulating mi RNA-145(mi R-145).METHODS: Forty-five samples of colon cancer tissues and 45 normal contr...AIM: To investigate the targeted inhibition of proliferation and migration of SW620 human colon cancer cells by upregulating mi RNA-145(mi R-145).METHODS: Forty-five samples of colon cancer tissues and 45 normal control samples were obtained from the biological database of the First Affiliated Hospital of Liaoning Medical University. We performed quantitative analysis of mi R-145 and N-ras expression in tissues; reverse transcriptase polymerase chain reaction analysis of mi R-145 expression in SW620 colon cancer cells and normal colonic epithelial cells; construction of mi R-145 lentiviral vector and determination of mi R-145 expression in SW620 cells transduced with mi R-145 vector; analysis of the effect of mi R-145 overexpression on SW620 cell proliferation; analysis of the effect of mi R-145 overexpression on SW620 cell migration using a wound healing assay; and analysis of the effect ofmi R-145 on N-ras expression using Western blotting. RESULTS: mi R-145 expression was significantly downregulated in colon cancer tissues, with its expression in normal colonic tissues being 4-5-fold higher(two sample t test, P < 0.05), whereas N-ras expression showed the opposite trend. mi R-145 expression in SW620 cells was downregulated, which was significantly lower compared to that in colonic epithelial cells(two sample t test, P < 0.05). mi R-145 vector and control were successfully packaged; expression of mi R-145 in SW620 cells transduced with mi R-145 was 8.2-fold of that in control cells(two sample t test, P < 0.05). The proliferation of mi R-145-transduced SW620 cells was significantly decreased compared to control cells(two sample t test, P < 0.05). At 48 h in the wound healing experiment, the migration indexes and controls were(97.27% ± 9.25%) and(70.22% ± 6.53%), respectively(two sample t test, P < 0.05). N-ras expression in mi R-145-tranduced SW620 cells was significantly lower than others(one-way analysis of variance, P < 0.05). CONCLUSION: mi R-145 is important in inhibiting colon cancer cell proliferation a展开更多
Recent advances in avian transgenic studies highlight the possibility of utilizing lentiviral vectors as tools to generate transgenic chickens. However, low rates of gonadal chimerism and germ line transmission effici...Recent advances in avian transgenic studies highlight the possibility of utilizing lentiviral vectors as tools to generate transgenic chickens. However, low rates of gonadal chimerism and germ line transmission efficiency still limit the broad usage of this method in creating transgenic chickens. In this study, we implemented a simple strategy using modified lentiviral vectors targeted to chicken primordial germ cells(PGCs) to generate transgenic chickens. The lentiviral vectors were pseudotyped with a modified Sindbis virus envelope protein(termed M168) and conjugated with an antibody specific to PGC membrane proteins. We demonstrated that these optimized M168-pseudotyped lentiviral vectors conjugated with SSEA4 antibodies successfully targeted transduction of PGCs in vitro and in vivo. Compared with the control, 50.0%–66.7% of chicken embryos expressed green fluorescent protein(GFP) in gonads transduced by the M168-pseudotyped lentivirus. This improved the targeted transduction efficiency by 30.0%–46.7%. Efficient chimerism of exogenous genes was also observed. This targeting technology could improve the efficiency of germ line transmission and provide greater opportunities for transgenic poultry studies.展开更多
基金supported by a grant from the Science and Technology Commission of Shanghai Municipality(No.07JC14036)
文摘BACKGROUND:Hepatic fibrosis is a necessary step in the development of hepatic cirrhosis.In this study we used lentiviral vector-mediated transfection technology to evaluate the effect of peroxisome proliferator-activated receptor gamma(PPAR-γ) on rat hepatic fibrosis. METHODS:Hepatic fibrosis in rats was induced by CCl4 for 2 weeks(early fibrosis)and 8 weeks(sustained fibrosis).The rats were randomly divided into four groups:normal control, fibrosis,blank vector,and PPAR-γ.They were infected with the recombinant lentiviral expression vector carrying the rat PPAR-γgene by portal vein injection.The liver of the rats was examined histologically and hydroxyproline was assessed.In vitro primary hepatic stellate cells(HSCs)were infected with the recombinant lentiviral expression vector carrying the rat PPAR-γgene.The status of HSC proliferation was measured by the MTT assay.The protein levels of PPAR-γ,α-smooth muscle actin(α-SMA)and type I collagen expression were evaluated by the Western blotting method. RESULTS:In vitro studies revealed that expression of PPAR-γ inhibited expression ofα-SMA and type I collagen in activated HSCs(P<0.01)as well as HSC proliferation(P<0.01).In vivo experiments indicated that in the early hepatic fibrosis group,the hydroxyproline content and the level of collagen I protein in the liver in the PPAR-γtransfected group were not significantly different compared to the hepatic fibrosis group and the blank vector group;whereas the expressions of PPAR-γ andα-SMA were different compared to the hepatic fibrosis group(P<0.01).In the sustained hepatic fibrosis group,there were significant differences in the hydroxyproline content and the expression of PPAR-γ,α-SMA,and type I collagen between each group.CONCLUSION:PPAR-γcan inhibit HSC proliferation and hepatic fibrosis,and suppressα-SMA and type I collagen expression.
基金Supported by National Natural Science Foundation of China,No.30860273 and No.81060201Natural Science Foundation of Guangxi,No.2011GXNSFA018273 and No.2013GX NSFAA019163the Key Health Science Project of Guangxi,No.Key1298003-2-6
文摘AIM: To evaluate the influence of E2F-1 on the growth of human gastric cancer(GC) cells in vivo and the mechanism involved. METHODS: E2F-1 recombinant lentiviral vectors were injected into xenograft tumors of MGC-803 cells in nude mice, and then tumor growth was investigated. Overexpression of transcription factor E2F-1 was assessed by reverse transcription-polymerase chain reaction(RT-PCR) and Western blotting analysis. Apoptosis rates were determined using a terminal deoxynucleotidyl transferase-mediated d UTP-biotin nick end labeling(TUNEL) assay. Expression levels of certain cell cycle regulators and apoptosis-related proteins, such as Bax, survivin, Bcl-2, cyclin D1, S-phase kinaseassociated protein 2, and c-Myc were examined by Western blotting and RT-PCR. RESULTS: Xenograft tumors of MGC-803 cells in nude mice injected with E2F-1 recombinant lentiviral vectors stably overexpressed the E2F-1 gene as measured by semi-quantitative RT-PCR(relative m RNA expression: 0.10 ± 0.02 vs 0.05 ± 0.02 for control vector and 0.06 ± 0.03 for no infection; both P < 0.01) and Western blotting(relative protein expression: 1.90 ± 0.05 vs 1.10 ± 0.03 in control vector infected and 1.11 ± 0.02 for no infection; both P < 0.01). The growth-curve of tumor volumes revealed that infection with E2F-1 recombinant lentiviral vectors significantly inhibited the growth of human GC xenografts(2.81 ± 1.02 vs 6.18 ± 1.15 in control vector infected and 5.87 ± 1.23 with no infection; both P < 0.05) at 15 d after treatment. TUNEL analysis demonstrated that E2F-1 overexpression promoted tumor cell apoptosis(18.6% ± 2.3% vs 6.7% ± 1.2% in control vector infected 6.3% ± 1.2% for no infection; both P < 0.05). Furthermore, lentiviral vector-mediated E2F-1 overexpression increased theexpression of Bax and suppressed survivin, Bcl-2, cyclin D1, Skp2, and c-Myc expression in tumor tissue.CONCLUSION: E2F-1 inhibits growth of GC cells via regulating multiple signaling pathways, and may play an important role in targeted therapy for GC.
文摘This study investigated the effects of miRNA-155 on malignant biological characteristics of NK/T-cell lymphoma cell lines and the possible mechanism. The expression of miRNA-155 was detected in lymphoma cell lines from different sources (SNK-6, YTS, Jurkat and DOHH2) by real-time PCR. Lentiviral vectors (pLL3.7) that could overexpress or downexpress miRNA-155 were constructed. Recombinant lentiviral particles were prepared and purified, and their titers determined. The expression of miRNA-155 in the infected SNK-6 cells and the cell proliferation were detected by PCR and CCK-8, respectively. Flow cytometry was used to determine the apoptosis of infected SNK-6 cells. The target of miRNA155 was predicted from Targetscan website. The effect of miRNA155 on FOXO3a expression was examined by Western blotting. The results showed that among the human NK/T-cell lymphoma cell lines SNK-6, YTS, Jurkat and DOHH2, the expression of miRNA-155 was highest in SNK-6. The infection efficiency of the recombinant lentivirns in SNK-6 was more than 70% at multiplicity of infection (MOI) of 100. The expression of miRNA-155 was significantly increased in SNK-6 cells infected by lentivirus vectors with high expression of miRNA-155 (4 times higher than the control group), and profoundly decreased in those infected with lentivirnses with low expression of miRNA-155. The proliferation of letivirns-infected SNK-6 cells was decreased as the expression of miRNA-155 reduced. The apoptosis rate was increased with the reduction in the expression of miRNA-155. FOXO3a was found to be a possible target of miRNA155, as suggested by Targetscan website. Western blotting showed that the expression of FOXO3a was significantly elevated in SNK-6 cells with miRNA-155 inhibition. It was concluded that reduction in miRNA-155 expression can inhibit the proliferation of SNK-6 lymphoma cells and promote their apoptosis, which may be associated with regulation of FOXO3a gene.
基金supported by the Natural Science Foundation of Hubei Province of China,No.2017CFB176(to CCY)the Fundamental Research Funds for The Central Hospital of Wuhan of China,No.YB16A01(to CCY)
文摘Cavernous nerve injury is the main cause of erectile dysfunction following radical prostatectomy.The recovery of erectile function following radical prostatectomy remains challenging.Our previous studies found that injecting adipose-derived stem cells(ADSCs)into the cavernosa could repair the damaged cavernous nerves,but the erectile function of the treated rats could not be restored to a normal level.We evaluated the efficacy of ADSCs infected with a lentiviral vector encoding rat brain-derived neurotrophic factor(lenti-rBDNF)in a rat model of cavernous nerve injury.The rats were equally and randomly divided into four groups.In the control group,bilateral cavernous nerves were isolated but not injured.In the bilateral cavernous nerve injury group,bilateral cavernous nerves were isolated and injured with a hemostat clamp for 2 minutes.In the ADSCGFP and ADSCrBDNF groups,after injury with a hemostat clamp for 2 minutes,rats were injected with ADSCs infected with lenti-GFP(1×106 in 20μL)and lenti-rBDNF(1×106 in 20μL),respectively.Erectile function was assessed 4 weeks after injury by measuring intracavernosal pressures.Then,penile tissues were collected for histological detection and western blot assay.Results demonstrated that compared with the bilateral cavernous nerve injury group,erectile function was significantly recovered in the ADSCGFP and ADSCrBDNF groups,and to a greater degree in the ADSCrBDNF group.Neuronal nitric oxide synthase content in the dorsal nerves and the ratio of smooth muscle/collagen were significantly higher in the ADSCrBDNF and ADSCGFP groups than in the bilateral cavernous nerve injury group.Neuronal nitric oxide synthase expression was obviously higher in the ADSCrBDNF group than in the ADSCGFP group.These findings confirm that intracavernous injection with ADSCs infected with lenti-rBDNF can effectively improve erectile dysfunction caused by cavernous nerve injury.This study was approved by the Medical Animal Care and Welfare Committee of Wuhan University,China(approval No.2017-163
基金Supported by Ph.D.Programs Foundation of Ministry of Education of China(No.20130141120052)
文摘AIM: To explore the effect of ciliary neurotrophic factor (CNTF) on retinal ganglion cell (RGC)-5 induced by hydrogen peroxide (H2O2). METHODS: After cell adherence, RGC-5 culture medium was changed to contain different concentrations of H2O2 from 50 to 150 μmol/L at four time points (0.5, 1, 1.5 and 2h) to select the concentration and time point for H2O2 induced model. Two different ways of interventions for injured RGC-5 cells respectively were CNTF as an addition in the culture medium or recombinant lentiviral plasmid carrying CNTF gene transfecting bone mesenchymal stem cells (BMSCs) for co-culture with RGC-5. RESULTS: Compared to the control group, H2O2 led to RGC-5 death closely associated with concentrations and action time of H2O2 and we chose 125 μmol/L and 2h to establish the H2O2-induced model. While CNTF inhibited the loss of RGC-5 cells obviously with a dose-dependent survival rate. Nevertheless two administration routes had different survival rate yet higher rate in recombinant lentiviral plasmid group but there were no statistically significant differences. CONCLUSION: Both the two administration routes of CNTF have effects on RGC-5 cells induced by H2O2. If their own advantages were combined, there may be a better administration route.
文摘In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein in bladder cancer(BC)carcinogenesis.Lentiviral vectors were used to achieve silencing or overexpression of TM9SF1 gene in three BC cell lines.These cell lines were then subject to cell counting kit 8,wound-healing assay,transwell assay,and flow cytometry.Proliferation,migration,and invasion of BC cells were increased in cell lines subjected to TM9SF1 overexpression.TM9SF1 silencing inhibited proliferation,migration and invasion of BC cells.The authors conclude that TM9SF1 may be an oncogene in bladder cancer pathogenesis.
基金supported by the Capital’s Funds for Health Improvement and Research(2022-1-5081)the National Key Research and Development Program of China(2023YFC2706304)+1 种基金Shenzhen Geno-Immune Medical InstituteBeijing Meikang Biotechnology Co.,LTD.
文摘This was a single-arm,multicenter,open-label phase I trial.Lentiviral vectors(LV)carrying the ABCD1 gene(LV-ABCD1)was directly injected into the brain of patients with childhood cerebral adrenoleukodystrophy(CCALD),and multi-site injection was performed.The injection dose increased from 200 to 1600 lL(vector titer:1×10^(9) transduction units per mL(TU/mL)),and the average dose per kilogram body weight ranges from 8 to 63.6 lL/kg.The primary endpoint was safety,dose-exploration and immunogenicity and the secondary endpoint was initial evaluation of efficacy and the expression of ABCD1 protein.A total of 7 patients participated in this phase I study and were followed for 1 year.No injectionrelated serious adverse event or death occurred.Common adverse events associated with the injection were irritability(71%,5/7)and fever(37.2-38.5℃,57%,4/7).Adverse events were mild and selflimited,or resolved within 3 d of symptomatic treatment.The maximal tolerable dose is 1600 lL.In 5 cases(83.3%,5/6),no lentivirus associated antibodies were detected.The overall survival at 1-year was 100%.The ABCD1 protein expression was detected in neutrophils,monocytes and lymphocytes.This study suggests that the intracerebral injection of LV-ABCD1 for CCALD is safe and can achieve successful LV transduction in vivo;even the maximal dose did not increase the risk of adverse events.Furthermore,the direct LV-ABCD1 injection displayed low immunogenicity.In addition,the effectiveness of intracerebral LV-ABCD1 injection has been preliminarily demonstrated while further investigation is needed.This study has been registered in the Chinese Clinical Trial Registry(https://www.chictr.org.cn/,registration number:ChiCTR1900026649).
基金This work was supported by the National Key Research and Development Program of China(2020YFC2008302)the Sichuan Science and Technology program(2019YFG0266)the 1.3.5 project for disciplines of excellence,West China Hospital,Sichuan University(ZYJC18028,2021HXFH064).
文摘Lentiviral vectors(LVs), derived from human immunodeficiency virus, are powerful tools for modifying the genes of eukaryotic cells such as hematopoietic stem cells and neural cells. With the extensive and in-depth studies on this gene therapy vehicle over the past two decades, LVs have been widely used in both research and clinical trials. For instance, third-generation and selfinactive LVs have been used to introduce a gene with therapeutic potential into the host genome and achieve targeted delivery into specific tissue. When LVs are employed in leukemia, the transduced T cells recognize and kill the tumor B cells;in β-thalassemia, the transduced CD34^(+) cells express normal β-globin;in adenosine deaminase-deficient severe combined immunodeficiency, the autologous CD34^(+) cells express adenosine deaminase and realize immune reconstitution. Overall, LVs can perform significant roles in the treatment of primary immunodeficiency diseases, hemoglobinopathies, B cell leukemia, and neurodegenerative diseases. In this review, we discuss the recent developments and therapeutic applications of LVs. The safe and efficient LVs show great promise as a tool for human gene therapy.
基金supported by the National Natural Science Foundation of China, Nos.81971159(to LW), 81771317(to JFF)
文摘Exosomes derived from bone marrow mesenchymal stem cells can inhibit neuroinflammation through regulating microglial phenotypes and promoting nerve injury repair.However,the underlying molecular mechanism remains unclear.In this study,we investigated the mechanism by which exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation.Our in vitro co-culture experiments showed that bone marrow mesenchymal stem cells and their exosomes promoted the polarization of activated BV2 microglia to their anti-inflammatory phenotype,inhibited the expression of proinflammatory cytokines,and increased the expression of anti-inflammatory cytokines.Our in vivo experiments showed that tail vein injection of exosomes reduced cell apoptosis in cortical tissue of mouse models of traumatic brain injury,inhibited neuroinflammation,and promoted the transformation of microglia to the anti-inflammatory phenotype.We screened some microRNAs related to neuroinflammation using microRNA sequencing and found that microRNA-181b seemed to be actively involved in the process.Finally,we regulated the expression of miR181b in the brain tissue of mouse models of traumatic brain injury using lentiviral transfection.We found that miR181b overexpression effectively reduced apoptosis and neuroinflamatory response after traumatic brain injury and promoted the transformation of microglia to the anti-inflammatory phenotype.The interleukin 10/STAT3 pathway was activated during this process.These findings suggest that the inhibitory effects of exosomes derived from bone marrow mesenchymal stem cells on neuroinflamation after traumatic brain injury may be realized by the action of miR181b on the interleukin 10/STAT3 pathway.
基金supported by the National Natural Science Foundation of China,No.81372041(to DW),and No.81801220(to MGZ)
文摘We previously demonstrated that overexpression of tropomyosin receptor kinase A(TrkA)promotes the survival and Schwann celllike differentiation of bone marrow stromal stem cells in nerve grafts,thereby enhancing the regeneration and functional recovery of the peripheral nerve.In the present study,we investigated the molecular mechanisms underlying the neuroprotective effects of TrkA in bone marrow stromal stem cells seeded into nerve grafts.Bone marrow stromal stem cells from Sprague-Dawley rats were infected with recombinant lentivirus vector expressing rat TrkA,TrkA-shRNA or the respective control.The cells were then seeded into allogeneic rat acellular nerve allografts for bridging a 1-cm right sciatic nerve defect.Then,8 weeks after surgery,hematoxylin and eosin staining showed that compared with the control groups,the cells and fibers in the TrkA overexpressing group were more densely and uniformly arranged,whereas they were relatively sparse and arranged in a disordered manner in the TrkA-shRNA group.Western blot assay showed that compared with the control groups,the TrkA overexpressing group had higher expression of the myelin marker,myelin basic protein and the axonal marker neurofilament 200.The TrkA overexpressing group also had higher levels of various signaling molecules,including TrkA,pTrkA(Tyr490),extracellular signal-regulated kinases 1/2(Erkl/2),pErk1/2(Thr202/Tyr204),and the anti-apoptotic proteins Bcl-2 and Bcl-xL.In contrast,these proteins were downregulated,while the pro-apoptotic factors Bax and Bad were upregulated,in the TrkA-shRNA group.The levels of the TrkA effectors Akt and pAkt(Ser473)were not different among the groups.These results suggest that TrkA enhances the survival and regenerative capacity of bone marrow stromal stem cells through upregulation of the Erk/Bcl-2 pathway.All procedures were approved by the Animal Ethical and Welfare Committee of Shenzhen University,China in December 2014(approval No.AEWC-2014-001219).
文摘This study examined the differentiation character and pluripotency of mesenchymal stem cells (MSCs) under different conditions. Adult MSCs were initially isolated from the bone marrow of rats, cultured in vitro and identified by flow cytometry. After MSCs were transferred to osteogenic and adipogenic medium respectively, the morphological characterization of induced cells was observed. The expression of marker genes was detected by RT-PCR analysis. Then MSCs were transfected with lenti- viral vectors pGC-FU-Sox9-EGFP. Enhanced green fluorescence protein (EGFP) expression and trans- fection efficiency were determined by fluorescence microscopy. The results demonstrated that EGFP caused no effect on the multilineage potential of adult MSCs. Sox9 gene expression of high level was maintained stable in the transfected MSCs and induced MSCs to differentiate into chondrocytes. Ag- gracan was positive in chondrogenic lineages and the expression of aggracan and type Ⅱ collagenwas significantly increased during MSCs chondrogenic differentiation. It was concluded that Sox9 gene-modified adult MSCs may be promising candidate cells for further studies on tissue engineering. EGFP facilitates the research on MSCs physiological behavior and application in tissue engineering during differentiation both in vitro and in vivo.
基金Supported by Liaoning Medical "Principal Fund" special fund clinical construction,No.XZJJ20130214Liaoning Provincial Science and Technology Department of Science and Technology Program,No.2013225305
文摘AIM: To investigate the targeted inhibition of proliferation and migration of SW620 human colon cancer cells by upregulating mi RNA-145(mi R-145).METHODS: Forty-five samples of colon cancer tissues and 45 normal control samples were obtained from the biological database of the First Affiliated Hospital of Liaoning Medical University. We performed quantitative analysis of mi R-145 and N-ras expression in tissues; reverse transcriptase polymerase chain reaction analysis of mi R-145 expression in SW620 colon cancer cells and normal colonic epithelial cells; construction of mi R-145 lentiviral vector and determination of mi R-145 expression in SW620 cells transduced with mi R-145 vector; analysis of the effect of mi R-145 overexpression on SW620 cell proliferation; analysis of the effect of mi R-145 overexpression on SW620 cell migration using a wound healing assay; and analysis of the effect ofmi R-145 on N-ras expression using Western blotting. RESULTS: mi R-145 expression was significantly downregulated in colon cancer tissues, with its expression in normal colonic tissues being 4-5-fold higher(two sample t test, P < 0.05), whereas N-ras expression showed the opposite trend. mi R-145 expression in SW620 cells was downregulated, which was significantly lower compared to that in colonic epithelial cells(two sample t test, P < 0.05). mi R-145 vector and control were successfully packaged; expression of mi R-145 in SW620 cells transduced with mi R-145 was 8.2-fold of that in control cells(two sample t test, P < 0.05). The proliferation of mi R-145-transduced SW620 cells was significantly decreased compared to control cells(two sample t test, P < 0.05). At 48 h in the wound healing experiment, the migration indexes and controls were(97.27% ± 9.25%) and(70.22% ± 6.53%), respectively(two sample t test, P < 0.05). N-ras expression in mi R-145-tranduced SW620 cells was significantly lower than others(one-way analysis of variance, P < 0.05). CONCLUSION: mi R-145 is important in inhibiting colon cancer cell proliferation a
基金the National Transgenic Breeding Project of China(2016ZX08009003006)National Natural Science Foundation of China(31672411)Discipline Innovative Engineering Plan(B12008)。
文摘Recent advances in avian transgenic studies highlight the possibility of utilizing lentiviral vectors as tools to generate transgenic chickens. However, low rates of gonadal chimerism and germ line transmission efficiency still limit the broad usage of this method in creating transgenic chickens. In this study, we implemented a simple strategy using modified lentiviral vectors targeted to chicken primordial germ cells(PGCs) to generate transgenic chickens. The lentiviral vectors were pseudotyped with a modified Sindbis virus envelope protein(termed M168) and conjugated with an antibody specific to PGC membrane proteins. We demonstrated that these optimized M168-pseudotyped lentiviral vectors conjugated with SSEA4 antibodies successfully targeted transduction of PGCs in vitro and in vivo. Compared with the control, 50.0%–66.7% of chicken embryos expressed green fluorescent protein(GFP) in gonads transduced by the M168-pseudotyped lentivirus. This improved the targeted transduction efficiency by 30.0%–46.7%. Efficient chimerism of exogenous genes was also observed. This targeting technology could improve the efficiency of germ line transmission and provide greater opportunities for transgenic poultry studies.