Existing explanations for several major phenomena in physics may need to be reconsidered in light of the description of a natural force termed KELEA (kinetic energy limiting electrostatic attraction). Three examples a...Existing explanations for several major phenomena in physics may need to be reconsidered in light of the description of a natural force termed KELEA (kinetic energy limiting electrostatic attraction). Three examples are selected for discussion in this paper: i) The proposed wave-particle duality of electrons;ii) cold fusion;and iii) superconductivity. The current interpretations of these enigmatic concepts are incomplete and not fully validated by scientific methods. The observations underlying these processes are seemingly consistent with KELEA acting as a repelling force between opposite electrical charges. Relatively simple experiments can be designed to either confirm or exclude KELEA in these and in various other currently perplexing physical phenomena.展开更多
Researches in the field of low-energy nuclear reactions (LENR) have shown a wide variety of manifestations of these phenomena. They appear in metals with hydrogen dissolved in them, in plasma, in gas discharge, in ele...Researches in the field of low-energy nuclear reactions (LENR) have shown a wide variety of manifestations of these phenomena. They appear in metals with hydrogen dissolved in them, in plasma, in gas discharge, in electrolysis, and even in biological systems. In addition to energy release, which far exceeds the capabilities of chemical reactions, LENR is characterized by a huge variety of emerging chemical elements. This report provides examples of appearance of many initially missing elements in different LENR installations. For example, in the nickel-hydrogen LENR reactor created in our laboratory, which worked for 7 months, Ca, V, Ti, Mn, Fe, Co, Cu, Zn, Ga, Ba, Sr, Yb, Hf were found. Moreover, new elements were found not only in the “fuel” but also in the surrounding matter. The huge variety of chemical elements that arise can be explained by the fact that in the processes of LENR, the interaction covers several atoms at once. The article discusses approaches to explaining the phenomena discovered in the process of LENR researches.展开更多
The aim of this work is to explain the deuteron-deuteron reactions within palladium lattice by means of the coherence theory of nuclear and condensed matter. The coherence model of condensed matter affirms that within...The aim of this work is to explain the deuteron-deuteron reactions within palladium lattice by means of the coherence theory of nuclear and condensed matter. The coherence model of condensed matter affirms that within a deuteron-loaded palladium lattice there are three different plasmas: electrons, ions and deuterons plasma. Then, according to the loading percentage x = D/Pd, the deuterium ions can take place on the octahedral sites or in the tetrahedral on the (1, 0, 0)-plane. Further, the present work is concentrated on Palladium because, when subjected to thermodynamic stress, this metal has been seen to give results which are interesting from both the theoretical and experimental points of view. Moreover in Pd lattice we can correlate the deuterium loading with D-Pd system phases (i.e. α,β and γ) by means of theory of condensed matter.展开更多
In this research, new thin film of a free standing electrolyte film containing poly(vinyl) chloride (PVC), 50% liquid epoxidized natural rubber (LENR50), Ethylene carbonate (EC) blends as a host for the electrolyte wh...In this research, new thin film of a free standing electrolyte film containing poly(vinyl) chloride (PVC), 50% liquid epoxidized natural rubber (LENR50), Ethylene carbonate (EC) blends as a host for the electrolyte which was doped with lithium perchlorate (LiClO4) as the dopant salt was successfully prepared with solution casting technique. The polymer electrolyte of PVC-LENR50-EC-LiClO4 was characterized using impedance spectroscopy (EIS), scanning electron microscopy (SEM) and Fourier transform infrared (ATR-FTIR). From the EIS results shows that electrolyte exhibited the highest ionic conductivity of 2.1 × 10–7 S●cm–1 at the 30 wt.% of LiClO4. The ionic conductivity result was supported by the morphological studies which revealed the good homogeneity of the PVC-LENR50-EC blends as no phase separation was observed. The smooth surface can ease the mobility of ions in the system complexes. In addition, the formation of micro-pores by introducing lithium salts to the electrolyte also improved the transportation properties of L+ ions in the electrolyte system and hence improving its ionic conductivity. The features of complexation of the electrolytes were studied by ATR-FTIR.展开更多
文摘Existing explanations for several major phenomena in physics may need to be reconsidered in light of the description of a natural force termed KELEA (kinetic energy limiting electrostatic attraction). Three examples are selected for discussion in this paper: i) The proposed wave-particle duality of electrons;ii) cold fusion;and iii) superconductivity. The current interpretations of these enigmatic concepts are incomplete and not fully validated by scientific methods. The observations underlying these processes are seemingly consistent with KELEA acting as a repelling force between opposite electrical charges. Relatively simple experiments can be designed to either confirm or exclude KELEA in these and in various other currently perplexing physical phenomena.
基金supported by the National Natural Science Foundation of China(Grant No.21433007 and 21673262)the 973 Program of Department of Sciences and Technology China(Grant No.2013CB632404)
文摘Researches in the field of low-energy nuclear reactions (LENR) have shown a wide variety of manifestations of these phenomena. They appear in metals with hydrogen dissolved in them, in plasma, in gas discharge, in electrolysis, and even in biological systems. In addition to energy release, which far exceeds the capabilities of chemical reactions, LENR is characterized by a huge variety of emerging chemical elements. This report provides examples of appearance of many initially missing elements in different LENR installations. For example, in the nickel-hydrogen LENR reactor created in our laboratory, which worked for 7 months, Ca, V, Ti, Mn, Fe, Co, Cu, Zn, Ga, Ba, Sr, Yb, Hf were found. Moreover, new elements were found not only in the “fuel” but also in the surrounding matter. The huge variety of chemical elements that arise can be explained by the fact that in the processes of LENR, the interaction covers several atoms at once. The article discusses approaches to explaining the phenomena discovered in the process of LENR researches.
文摘The aim of this work is to explain the deuteron-deuteron reactions within palladium lattice by means of the coherence theory of nuclear and condensed matter. The coherence model of condensed matter affirms that within a deuteron-loaded palladium lattice there are three different plasmas: electrons, ions and deuterons plasma. Then, according to the loading percentage x = D/Pd, the deuterium ions can take place on the octahedral sites or in the tetrahedral on the (1, 0, 0)-plane. Further, the present work is concentrated on Palladium because, when subjected to thermodynamic stress, this metal has been seen to give results which are interesting from both the theoretical and experimental points of view. Moreover in Pd lattice we can correlate the deuterium loading with D-Pd system phases (i.e. α,β and γ) by means of theory of condensed matter.
文摘In this research, new thin film of a free standing electrolyte film containing poly(vinyl) chloride (PVC), 50% liquid epoxidized natural rubber (LENR50), Ethylene carbonate (EC) blends as a host for the electrolyte which was doped with lithium perchlorate (LiClO4) as the dopant salt was successfully prepared with solution casting technique. The polymer electrolyte of PVC-LENR50-EC-LiClO4 was characterized using impedance spectroscopy (EIS), scanning electron microscopy (SEM) and Fourier transform infrared (ATR-FTIR). From the EIS results shows that electrolyte exhibited the highest ionic conductivity of 2.1 × 10–7 S●cm–1 at the 30 wt.% of LiClO4. The ionic conductivity result was supported by the morphological studies which revealed the good homogeneity of the PVC-LENR50-EC blends as no phase separation was observed. The smooth surface can ease the mobility of ions in the system complexes. In addition, the formation of micro-pores by introducing lithium salts to the electrolyte also improved the transportation properties of L+ ions in the electrolyte system and hence improving its ionic conductivity. The features of complexation of the electrolytes were studied by ATR-FTIR.