CoMn layered double hydroxides(CoMn-LDH)are promising electrode materials for supercapacitors because of their excellent cyclic stability.However,they possess relatively low capacitances.In this work,hybrid CoMn-LDH@M...CoMn layered double hydroxides(CoMn-LDH)are promising electrode materials for supercapacitors because of their excellent cyclic stability.However,they possess relatively low capacitances.In this work,hybrid CoMn-LDH@MnO2 products grown on Ni foams were obtained through a facile hydrothermal method.The as-synthesized samples employed as electrodes deliver a specific capacitance of 2325.01 F g^-1 at 1 A g^-1.An assembled asymmetric supercapacitor using these products as positive electrodes shows a maximum energy density of 59.73 W h kg^-1 at 1000.09 W kg^-1.The prominent electrochemical performance of the as-prepared electrodes could be attributes to hierarchical structures.These findings suggest that hybrid structures might be potential alternatives for future flexible energy storage devices.展开更多
Visible-light-driven CO2 photoreduction to achieve renewable materials,such as syngas,hydrocarbons,and alcohols,is a key process that could relieve environmental problems and the energy crisis simultaneously.Reduction...Visible-light-driven CO2 photoreduction to achieve renewable materials,such as syngas,hydrocarbons,and alcohols,is a key process that could relieve environmental problems and the energy crisis simultaneously.Reduction of syngas products with diff erent H2:CO proportions is highly expected to produce high value-added chemicals in the industry.However,the development of technologies employing long-wavelength irradiation to achieve CO2 photoreduction and simultaneous tuning of the resultant H2:CO proportion remains a challenging endeavor.In this work,we carried out interfacial engineering by designing a series of heterostructured layered double-hydroxide/MoS2 nanocomposites via electrostatic self-assembly.The syngas proportion(H 2:CO)obtained from CO2 photoreduction could be modulated from 1:1 to 9:1 by visible-light irradiation(λ>400 nm)under the control of the interface-rich heterostructures.This work provides a cost-eff ective strategy for solar-tofuel conversion in an artificial photosynthetic system and describes a novel route to produce syngas with targeted proportions.展开更多
Hybrid materials are attracting intensive attention for their applications in electronics, photoelectronics, LEDs, field-effect transistors, etc. Engineering new hybrid materials and further exploiting their new funct...Hybrid materials are attracting intensive attention for their applications in electronics, photoelectronics, LEDs, field-effect transistors, etc. Engineering new hybrid materials and further exploiting their new functions will be significant for future science and technique development. In this work, alternatively stacked self-assembled CoAl LDH/MoS2 nanohybrid has been successfully synthesized by an exfoliation-flocculation method from positively charged CoAl LDH nanosheets(CoAl-NS) with negatively charged MoS2 nanosheets(MoS2-NS). The CoAl LDH/MoS2 hybrid material exhibits an enhanced catalytic performance for oxygen evolution reaction(OER) compared with original constituents of CoAl LDH nanosheets and MoS2 nanosheets. The enhanced OER catalytic performance of CoAl LDH/MoS2 is demonstrated to be due to the improved electron transfer, more exposed catalytic active sites, and accelerated oxygen evolution reaction kinetics.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (No 30919011410)。
文摘CoMn layered double hydroxides(CoMn-LDH)are promising electrode materials for supercapacitors because of their excellent cyclic stability.However,they possess relatively low capacitances.In this work,hybrid CoMn-LDH@MnO2 products grown on Ni foams were obtained through a facile hydrothermal method.The as-synthesized samples employed as electrodes deliver a specific capacitance of 2325.01 F g^-1 at 1 A g^-1.An assembled asymmetric supercapacitor using these products as positive electrodes shows a maximum energy density of 59.73 W h kg^-1 at 1000.09 W kg^-1.The prominent electrochemical performance of the as-prepared electrodes could be attributes to hierarchical structures.These findings suggest that hybrid structures might be potential alternatives for future flexible energy storage devices.
基金the National Natural Science Foundation of China(Nos.U1707603,21878008,21625101,and U1507102,21922801)the Beijing Natural Science Foundation(Nos.2182047 and 2202036)the Fundamental Research Funds for the Central Universities(Nos.XK1802-6,XK1902,12060093063,and 2312018RC07).
文摘Visible-light-driven CO2 photoreduction to achieve renewable materials,such as syngas,hydrocarbons,and alcohols,is a key process that could relieve environmental problems and the energy crisis simultaneously.Reduction of syngas products with diff erent H2:CO proportions is highly expected to produce high value-added chemicals in the industry.However,the development of technologies employing long-wavelength irradiation to achieve CO2 photoreduction and simultaneous tuning of the resultant H2:CO proportion remains a challenging endeavor.In this work,we carried out interfacial engineering by designing a series of heterostructured layered double-hydroxide/MoS2 nanocomposites via electrostatic self-assembly.The syngas proportion(H 2:CO)obtained from CO2 photoreduction could be modulated from 1:1 to 9:1 by visible-light irradiation(λ>400 nm)under the control of the interface-rich heterostructures.This work provides a cost-eff ective strategy for solar-tofuel conversion in an artificial photosynthetic system and describes a novel route to produce syngas with targeted proportions.
基金financially supported by NNSFC(No.21025104,21271171,and 91022018)
文摘Hybrid materials are attracting intensive attention for their applications in electronics, photoelectronics, LEDs, field-effect transistors, etc. Engineering new hybrid materials and further exploiting their new functions will be significant for future science and technique development. In this work, alternatively stacked self-assembled CoAl LDH/MoS2 nanohybrid has been successfully synthesized by an exfoliation-flocculation method from positively charged CoAl LDH nanosheets(CoAl-NS) with negatively charged MoS2 nanosheets(MoS2-NS). The CoAl LDH/MoS2 hybrid material exhibits an enhanced catalytic performance for oxygen evolution reaction(OER) compared with original constituents of CoAl LDH nanosheets and MoS2 nanosheets. The enhanced OER catalytic performance of CoAl LDH/MoS2 is demonstrated to be due to the improved electron transfer, more exposed catalytic active sites, and accelerated oxygen evolution reaction kinetics.