In this paper, a multi-view gait based human recognition system using the fusion of two kinds of features is proposed.We use cross wavelet transform to extract dynamic feature and bipartite graph model to extract stat...In this paper, a multi-view gait based human recognition system using the fusion of two kinds of features is proposed.We use cross wavelet transform to extract dynamic feature and bipartite graph model to extract static feature which are coefficients of quadrature mirror filter(QMF)-graph wavelet filter bank. Feature fusion is done after normalization. For normalization of features, min-max rule is used and mean-variance method is used to find weights for normalized features. Euclidean distance between each feature vector and center of the cluster which is obtained by k-means clustering is used as similarity measure in Bayesian framework. Experiments performed on widely used CASIA B gait database show that, the fusion of these two feature sets preserve discriminant information. We report 99.90 % average recognition rate.展开更多
针对传统话题检测方法在微博短文本上存在高维稀疏的缺陷,提出了一种基于特征融合的K-means微博话题发现模型。为了更好地表达微博话题的语义信息,使用在句子中共现的词对向量模型(Biterm_VSM)代替传统的向量空间模型(Vector Space Mode...针对传统话题检测方法在微博短文本上存在高维稀疏的缺陷,提出了一种基于特征融合的K-means微博话题发现模型。为了更好地表达微博话题的语义信息,使用在句子中共现的词对向量模型(Biterm_VSM)代替传统的向量空间模型(Vector Space Model,VSM),并结合主题模型(Latent Dirichlet Allocation,LDA)挖掘出微博短文本中的潜在语义,把两个模型得到的特征进行特征融合,并应用K-means聚类算法进行话题的发现。实验结果表明,与传统的话题检测方法相比,该模型的调整兰德系数(Adjusted Rand index,ARI)为0.80,比传统的话题检测方法提高了3%~6%。展开更多
文摘In this paper, a multi-view gait based human recognition system using the fusion of two kinds of features is proposed.We use cross wavelet transform to extract dynamic feature and bipartite graph model to extract static feature which are coefficients of quadrature mirror filter(QMF)-graph wavelet filter bank. Feature fusion is done after normalization. For normalization of features, min-max rule is used and mean-variance method is used to find weights for normalized features. Euclidean distance between each feature vector and center of the cluster which is obtained by k-means clustering is used as similarity measure in Bayesian framework. Experiments performed on widely used CASIA B gait database show that, the fusion of these two feature sets preserve discriminant information. We report 99.90 % average recognition rate.