"六合一"道路编码是交管业务中用来定位事故和违法的基础文本数据,缺乏空间位置信息,而已有的常用路网数据如高德路网,都是基于多车道路段表达的路网且现势性相对于OSM(Open Street Map)路网较低,难以满足交管业务的需求。针..."六合一"道路编码是交管业务中用来定位事故和违法的基础文本数据,缺乏空间位置信息,而已有的常用路网数据如高德路网,都是基于多车道路段表达的路网且现势性相对于OSM(Open Street Map)路网较低,难以满足交管业务的需求。针对上述问题,以高德路网作为基础、高现势性的OSM路网作补充,将轨迹聚类分析中的LCSS(longest common subsequence)算法应用在路网匹配过程中,并对匹配后的路网使用Stroke方法进行路网融合。实验结果表明,使用LCSS算法可以达到良好的路网匹配效果。最后基于此开发了一套路网匹配融合程序,并在武汉市交通管理局投入使用。展开更多
为了挖掘移动用户行为,提出了基于密度聚类的移动用户热点区域识别算法及融合加权频繁模式(Frequent Pattern,FP)树和最长公共子序列(Longest Common Subsequence,LCSS)算法的移动用户出行频繁轨迹模式提取方法。首先说明与思路相关的概...为了挖掘移动用户行为,提出了基于密度聚类的移动用户热点区域识别算法及融合加权频繁模式(Frequent Pattern,FP)树和最长公共子序列(Longest Common Subsequence,LCSS)算法的移动用户出行频繁轨迹模式提取方法。首先说明与思路相关的概念,其次采用密度聚类方法来识别城市的热点区域,最后融合加权FP树和LCSS算法来提取移动用户出行轨迹模式,并对算法在工程中的应用路径及应用效果进行了说明。展开更多
为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进...为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进行相似性测量,然后采用改进的LCSS算法对轨迹的方向信息进行相似性测量。与其他轨迹聚类算法不同,该算法融合了Hausdorff距离和LCSS两种算法的优点,提高了轨迹分类的准确性。此外,为了进一步降低计算复杂度,该文还实现了一种基于插值的保距变换算法和一种LCSS快速算法。实验结果表明,该轨迹分类算法可以明显提高轨迹的聚类准确率,聚类准确率可达到96%;基于插值的保距变换算法和LCSS快速算法可以很大程度上降低算法的计算复杂度,下降幅度最大可达到80%。该方法可以同时满足轨迹分类对精确度、实时性和鲁棒性的要求。展开更多
文摘"六合一"道路编码是交管业务中用来定位事故和违法的基础文本数据,缺乏空间位置信息,而已有的常用路网数据如高德路网,都是基于多车道路段表达的路网且现势性相对于OSM(Open Street Map)路网较低,难以满足交管业务的需求。针对上述问题,以高德路网作为基础、高现势性的OSM路网作补充,将轨迹聚类分析中的LCSS(longest common subsequence)算法应用在路网匹配过程中,并对匹配后的路网使用Stroke方法进行路网融合。实验结果表明,使用LCSS算法可以达到良好的路网匹配效果。最后基于此开发了一套路网匹配融合程序,并在武汉市交通管理局投入使用。
文摘为了挖掘移动用户行为,提出了基于密度聚类的移动用户热点区域识别算法及融合加权频繁模式(Frequent Pattern,FP)树和最长公共子序列(Longest Common Subsequence,LCSS)算法的移动用户出行频繁轨迹模式提取方法。首先说明与思路相关的概念,其次采用密度聚类方法来识别城市的热点区域,最后融合加权FP树和LCSS算法来提取移动用户出行轨迹模式,并对算法在工程中的应用路径及应用效果进行了说明。
文摘为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进行相似性测量,然后采用改进的LCSS算法对轨迹的方向信息进行相似性测量。与其他轨迹聚类算法不同,该算法融合了Hausdorff距离和LCSS两种算法的优点,提高了轨迹分类的准确性。此外,为了进一步降低计算复杂度,该文还实现了一种基于插值的保距变换算法和一种LCSS快速算法。实验结果表明,该轨迹分类算法可以明显提高轨迹的聚类准确率,聚类准确率可达到96%;基于插值的保距变换算法和LCSS快速算法可以很大程度上降低算法的计算复杂度,下降幅度最大可达到80%。该方法可以同时满足轨迹分类对精确度、实时性和鲁棒性的要求。