期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种综合光谱、纹理、结构特征的高分辨率遥感影像变化检测方法 被引量:9
1
作者 李亮 申学林 +1 位作者 李胜 应国伟 《测绘通报》 CSCD 北大核心 2019年第S1期113-118,共6页
为充分利用像斑的多特征以提高变化检测精度,提出了一种综合光谱、纹理、结构特征的高分辨率遥感影像变化检测方法。通过影像分割获取像斑,利用灰度直方图、局部二值模式/对比度(LBP/C)直方图、方向梯度直方图(HOG)分别表达像斑的光谱... 为充分利用像斑的多特征以提高变化检测精度,提出了一种综合光谱、纹理、结构特征的高分辨率遥感影像变化检测方法。通过影像分割获取像斑,利用灰度直方图、局部二值模式/对比度(LBP/C)直方图、方向梯度直方图(HOG)分别表达像斑的光谱、纹理、结构特征;采用直方图相交距离度量像斑的特征距离,采用大津法获取变化阈值,分别获得光谱、纹理、结构特征下的变化检测结果;综合3种变化检测结果,将像斑划分为变化、不确定、未变化3类;以变化与未变化两类像斑作为训练样本像斑,利用支持向量机(SVM)算法对不确定类像斑进行变化/未变化划分。在QuickBird遥感影像上的试验结果验证了本文方法的有效性。 展开更多
关键词 多特征 变化检测 lbp/c HOG 支撑向量机
下载PDF
基于改进JSEG算法的高分辨率遥感图像分割方法 被引量:5
2
作者 冯晓毅 王西博 +1 位作者 王蕾 彭进业 《计算机科学》 CSCD 北大核心 2012年第8期284-287,共4页
JSEG算法是一种有效的彩色图像分割方法,但该方法直接用于遥感图像分割时,往往会出现因遥感图像区域边界较模糊而导致区域边界分割不准确,或因区域阴影而导致的过分割现象。为了解决上述问题,提出基于改进JSEG算法的遥感图像分割方法,... JSEG算法是一种有效的彩色图像分割方法,但该方法直接用于遥感图像分割时,往往会出现因遥感图像区域边界较模糊而导致区域边界分割不准确,或因区域阴影而导致的过分割现象。为了解决上述问题,提出基于改进JSEG算法的遥感图像分割方法,该方法利用能更好描述区域内颜色的同质性的局部同质矩阵来校正传统JSEG算法中的局部J值,以实现对区域边界的准确反映,提高区域边界分割的准确性;利用图像的LBP/C纹理特征,合并具有相似纹理信息的颜色类,以减弱传统JSEG算法的过分割现象。仿真实验验证了上述方法的有效性。 展开更多
关键词 高分辨率遥感图像 JSEG算法 局部同质 lbp/c算子
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部