The experimental absorption spectra of a hot NaBr plasma are theoretically studied by using a detailed level accounting model. The sodium and bromine absorption spectra have been well reproduced respectively in the ap...The experimental absorption spectra of a hot NaBr plasma are theoretically studied by using a detailed level accounting model. The sodium and bromine absorption spectra have been well reproduced respectively in the approach of local thermodynamic equilibrium, in which the populations between and within ions are obtained by solving the Saha-Boltzmann equation. The temperature of bromine however is found to be much lower than the one of sodium. Such discrepancy indicates that thermodynamic equilibrium is not reached between the sodium and bromine atoms during the measurement.展开更多
Based on the multi-configuration Dirac-Fock method, theoretical calculations are carried out for the dielectronic recombination (DR) rate coefficients and the collision excitation rate coefficients of Sn^10+ ions. ...Based on the multi-configuration Dirac-Fock method, theoretical calculations are carried out for the dielectronic recombination (DR) rate coefficients and the collision excitation rate coefficients of Sn^10+ ions. It is found that the total DR rate coefficient has its maximum value between 10eV and 100eV and is greater than either the radiative recombination or three-body recombination rate coefficients (the number of free electrons per unit is 10^21 cm^3) for the ease of Te 〉 1 eV. Therefore, DR can strongly influence the ionization balance of laser produced multi-charged tin ions. The related dieleetronie satellite cannot be ignored at low temperature Te 〈 5 eV.展开更多
Radiation from laser-produced plasmas was examined as a potential wavelength calibration source for spectrographs in the extreme ultraviolet(EUV) region.Specifically, the EUV emission of chromium(Cr) plasmas was acqui...Radiation from laser-produced plasmas was examined as a potential wavelength calibration source for spectrographs in the extreme ultraviolet(EUV) region.Specifically, the EUV emission of chromium(Cr) plasmas was acquired via spatiotemporally resolved emission spectroscopy.With the aid of Cowan and flexible atomic code(FAC) structure calculations,and a comparative analysis with the simulated spectra, emission peaks in the 6.5–15.0 nm range were identified as 3 p–4 d, 5 d and 3 p–4 s transition lines from Cr5+–Cr10+ions.A normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model were assumed for the spectral simulations, and used to estimate the electron temperature and density in the plasma.The results indicate that several relatively isolated emission lines of highly charged ions would be useful for EUV wavelength calibration.展开更多
基金Supported by the National Science Fund for Distinguished Young Scholars under Grant No 10025416, the National Natural Science Foundation of China under Grant No 10474138, the National High-Tech ICF Committee in China, and the China Research Association of Atomic and Molecular Data.
文摘The experimental absorption spectra of a hot NaBr plasma are theoretically studied by using a detailed level accounting model. The sodium and bromine absorption spectra have been well reproduced respectively in the approach of local thermodynamic equilibrium, in which the populations between and within ions are obtained by solving the Saha-Boltzmann equation. The temperature of bromine however is found to be much lower than the one of sodium. Such discrepancy indicates that thermodynamic equilibrium is not reached between the sodium and bromine atoms during the measurement.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10434100 and 10774122, the Foundation of China/Ireland Science and Technology Collaboration Research under Grant No CI-2004-07, the Specialized Research Fund for the Doctoral Programme of Higher Education of China under Grant No 20070736001, and the Foundation of Northwest Normal University under Grant No NWNU-KJCXGC-03-21.
文摘Based on the multi-configuration Dirac-Fock method, theoretical calculations are carried out for the dielectronic recombination (DR) rate coefficients and the collision excitation rate coefficients of Sn^10+ ions. It is found that the total DR rate coefficient has its maximum value between 10eV and 100eV and is greater than either the radiative recombination or three-body recombination rate coefficients (the number of free electrons per unit is 10^21 cm^3) for the ease of Te 〉 1 eV. Therefore, DR can strongly influence the ionization balance of laser produced multi-charged tin ions. The related dieleetronie satellite cannot be ignored at low temperature Te 〈 5 eV.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402300)the National Natural Science Foundation of China(Grant Nos.11874051,11274254,and 11564037)
文摘Radiation from laser-produced plasmas was examined as a potential wavelength calibration source for spectrographs in the extreme ultraviolet(EUV) region.Specifically, the EUV emission of chromium(Cr) plasmas was acquired via spatiotemporally resolved emission spectroscopy.With the aid of Cowan and flexible atomic code(FAC) structure calculations,and a comparative analysis with the simulated spectra, emission peaks in the 6.5–15.0 nm range were identified as 3 p–4 d, 5 d and 3 p–4 s transition lines from Cr5+–Cr10+ions.A normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model were assumed for the spectral simulations, and used to estimate the electron temperature and density in the plasma.The results indicate that several relatively isolated emission lines of highly charged ions would be useful for EUV wavelength calibration.