GPU拥有几百GFlops甚至上TFlops的浮点计算能力,将GPU应用于粒子模拟,可有效提高大规模粒子模拟的速度,降低计算成本。本文利用GPU加速三维激光等离子体模拟算法LARED-P,提出了基于CPU+GPU的任务划分、GPU上任务分解、大规模计算核心的...GPU拥有几百GFlops甚至上TFlops的浮点计算能力,将GPU应用于粒子模拟,可有效提高大规模粒子模拟的速度,降低计算成本。本文利用GPU加速三维激光等离子体模拟算法LARED-P,提出了基于CPU+GPU的任务划分、GPU上任务分解、大规模计算核心的分解方法,结合使用了寄存器、纹理内存对算法进行加速。在双精度条件下,移植后的算法在工作频率为1.44GHz的NVIDIA Tesla S1070的单个GPU上获得了相当于主频2.4GHz的Intel(R)Core(TM)2 Quad CPU Q6600单核的6倍加速比。展开更多
文摘GPU拥有几百GFlops甚至上TFlops的浮点计算能力,将GPU应用于粒子模拟,可有效提高大规模粒子模拟的速度,降低计算成本。本文利用GPU加速三维激光等离子体模拟算法LARED-P,提出了基于CPU+GPU的任务划分、GPU上任务分解、大规模计算核心的分解方法,结合使用了寄存器、纹理内存对算法进行加速。在双精度条件下,移植后的算法在工作频率为1.44GHz的NVIDIA Tesla S1070的单个GPU上获得了相当于主频2.4GHz的Intel(R)Core(TM)2 Quad CPU Q6600单核的6倍加速比。