Coumarins belong to a diverse group of naturally occurring non-nutrient phytochemicals known as benzo-α- pyrones. In this study, esculetin, a 6,7-dihydroxy derivative of coumarin with pleiotropic biological activitie...Coumarins belong to a diverse group of naturally occurring non-nutrient phytochemicals known as benzo-α- pyrones. In this study, esculetin, a 6,7-dihydroxy derivative of coumarin with pleiotropic biological activities, was found to have no significant cytotoxic effect on normal murine macrophages, but it could increase the in vivo migration of the thioglycollate-elicited macrophages in a dose-dependent manner. Moreover, esculetin significantly increased the endocytic activity, and augmented the nitric oxide production and iNOS gene expression in LPS-treated macrophages. In addition, in vivo administration of esculetin into mice was shown to increase the mitogenesis of splenic lymphocytes towards Con A and LPS stimulations, and induced the LAK activity of splenic lymphocytes. Collectively, our results indicate that esculetin could exert immunomodulatory effects on murine macrophages and lymphocytes, both in vitro and in vivo, and this might be one of the possible mechanisms by which coumarins can exert their chemopreventive and anti-tumor activities in vivo. Cellular & Molecular Immunology. 2005;2(3): 181-188.展开更多
文摘Coumarins belong to a diverse group of naturally occurring non-nutrient phytochemicals known as benzo-α- pyrones. In this study, esculetin, a 6,7-dihydroxy derivative of coumarin with pleiotropic biological activities, was found to have no significant cytotoxic effect on normal murine macrophages, but it could increase the in vivo migration of the thioglycollate-elicited macrophages in a dose-dependent manner. Moreover, esculetin significantly increased the endocytic activity, and augmented the nitric oxide production and iNOS gene expression in LPS-treated macrophages. In addition, in vivo administration of esculetin into mice was shown to increase the mitogenesis of splenic lymphocytes towards Con A and LPS stimulations, and induced the LAK activity of splenic lymphocytes. Collectively, our results indicate that esculetin could exert immunomodulatory effects on murine macrophages and lymphocytes, both in vitro and in vivo, and this might be one of the possible mechanisms by which coumarins can exert their chemopreventive and anti-tumor activities in vivo. Cellular & Molecular Immunology. 2005;2(3): 181-188.