期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于神经网络的大数据分析方法 被引量:5
1
作者 殷芙萍 江秋语 《软件导刊》 2020年第9期39-42,共4页
基于不同视角和情境特征的大数据定义诠释了大数据的5V特性,在扩展大数据价值空间与应用模式的同时催生了以"数据驱动+模型驱动"范式转变为代表的核心问题。为解决大数据分析核心问题,引入神经网络,采用性能优越的卷积神经网... 基于不同视角和情境特征的大数据定义诠释了大数据的5V特性,在扩展大数据价值空间与应用模式的同时催生了以"数据驱动+模型驱动"范式转变为代表的核心问题。为解决大数据分析核心问题,引入神经网络,采用性能优越的卷积神经网络设计对比实验,运用两个公开数据集对其进行训练,并在输出层分别使用L2-SVM和Softmax激活函数。在手写数字识别和彩色图像识别中,L2-SVM的识别错误率分别为0.87%和11.9%。实验结果表明,基于L2-SVM的神经网络大数据分析方法可以获得更高的识别精度。 展开更多
关键词 大数据分析 神经网络 l2-svm Softmax
下载PDF
L2-SVM下的短文本情感分类动态CNN模型 被引量:3
2
作者 鲁新新 柴岩 《计算机应用与软件》 北大核心 2018年第1期298-303,共6页
为了解决情感分类文本稀疏、传统方法过分依赖情感词典和人工设定特征工程等问题,提出一种基于L2-SVM和动态卷积神经网络的LDCNN模型。该模型采用不同于经典CNN模型的L2-SVM目标函数,解决了参数优化过程梯度弥散现象。通过真实网络评论... 为了解决情感分类文本稀疏、传统方法过分依赖情感词典和人工设定特征工程等问题,提出一种基于L2-SVM和动态卷积神经网络的LDCNN模型。该模型采用不同于经典CNN模型的L2-SVM目标函数,解决了参数优化过程梯度弥散现象。通过真实网络评论数据集与经典方法的定量对比,实现了LDCNN模型准确率的大幅提升,并通过调整惩罚系数获得了最佳模型性能。 展开更多
关键词 短文本 情感分类 文本稀疏 l2-svm 动态卷积神经网络
下载PDF
基于深度学习耦合稀疏语义度量的商标检索算法
3
作者 梁平 柴建伟 裴圣华 《包装工程》 CAS 北大核心 2019年第3期237-245,共9页
目的针对当前商标图像检索中的语义鸿沟问题,提出一种深度学习耦合稀疏语义度量的商标图像检索方案,有效抑制噪声干扰,降低冗余特征维数。方法首先,根据由卷积与池化组成的无监督学习机制,对输入商标图像进行多层特征提取,输出一维特征... 目的针对当前商标图像检索中的语义鸿沟问题,提出一种深度学习耦合稀疏语义度量的商标图像检索方案,有效抑制噪声干扰,降低冗余特征维数。方法首先,根据由卷积与池化组成的无监督学习机制,对输入商标图像进行多层特征提取,输出一维特征向量。随后,通过L2-支持向量机(L2-SVM)进行分类,利用特征向量进行训练,获得多级联特征。然后,根据商标图像的多级联特征和用户标签信息的异构数据结构,设计一种稀疏语义度量方法进行相似检索,减少语义鸿沟。此外,引入一种混合范数作为相似度量的稀疏约束,以抑制原始输入空间中的冗余特征维数和噪声,优化检索结果。结果实验表明,与当前流行的商标检索方案相比,所提算法具有更高的检索精度,其输出的结果中仅有1幅无关图像。结论该方案具有较高的检索精度和较强的鲁棒性,在商标检测、商标保护等方面中具有良好的应用价值。 展开更多
关键词 商标检索 语义鸿沟 深度学习 稀疏语义度量 l2支持向量机 混合范数
下载PDF
基于特征提取的面向边缘数据中心的窃电监测 被引量:47
4
作者 张宇帆 艾芊 +2 位作者 李昭昱 肖斐 饶渝泽 《电力系统自动化》 EI CSCD 北大核心 2020年第9期128-134,共7页
随着电网信息物理系统的发展,一部分数据处理功能逐渐下沉到靠近终端用户的边缘层。为了给后续分析提供可靠的数据源,及时发现异常用电行为,窃电监测是边缘数据中心重要功能之一。文中提出一种针对边缘数据中心的窃电监测方法,该方法利... 随着电网信息物理系统的发展,一部分数据处理功能逐渐下沉到靠近终端用户的边缘层。为了给后续分析提供可靠的数据源,及时发现异常用电行为,窃电监测是边缘数据中心重要功能之一。文中提出一种针对边缘数据中心的窃电监测方法,该方法利用深度卷积生成对抗网络(DCGAN)鉴别器提取得到的特征,在边缘数据中心对二范数线性支持向量机(L2SVM)进行训练。实验结果证实,DCGAN具有较好的收敛性能,鉴别器提取得到的正常与窃电行为用电特征具有明显划分,且比基于主成分分析(PCA)特征提取方法更加有效,此外,与基于径向基核函数的支持向量机(SVM)反窃电方法相比,所提方法准确度更好且计算复杂度低,适合边缘数据中心部署。 展开更多
关键词 信息物理系统 边缘数据中心 深度卷积生成对抗网络(DCGAN) 特征提取 二范数线性支持向量机(l2svm)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部