传统图像去噪法基于有用信息和噪声频率特性的差别实现去噪,实际中,有用信息和噪声在频带上往往存在重叠,因此,传统去噪法在抑制噪声的同时,往往损失了细节信息,使图像变模糊.本文引入稀疏与低秩矩阵分解模型描述图像去噪问题,基于该模...传统图像去噪法基于有用信息和噪声频率特性的差别实现去噪,实际中,有用信息和噪声在频带上往往存在重叠,因此,传统去噪法在抑制噪声的同时,往往损失了细节信息,使图像变模糊.本文引入稀疏与低秩矩阵分解模型描述图像去噪问题,基于该模型,采用交替方向法(Alternating direction method,ADM)得到复原图像.实验证明该方法比常用的中值滤波法更有效地抑制了椒盐噪声,同时更好地保持了原始图像的细节信息.展开更多
Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault ...Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault location method(1982), a new nonlinearly constrained L1-norm problem is developed. It can be solved with less computing time through only one optimization processing. The proposed neural network can be used to solve the analog diagnosis L1 problem. The validity of the proposed neural networks and the fault location L1 method are illustrated by extensive computer simulations.展开更多
The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor late...The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor lateral continuity. In this paper, we propose a constrained L1-norm method for adaptive multiple subtraction by introducing the lateral continuity constraint for the estimated primaries. We measure the lateral continuity using prediction-error filters (PEF). We illustrate our method with the synthetic Pluto dataset. The results show that the constrained L1-norm method can simultaneously attenuate the multiples and preserve the primaries.展开更多
Probabilistic load forecasting(PLF)is able to present the uncertainty information of the future loads.It is the basis of stochastic power system planning and operation.Recent works on PLF mainly focus on how to develo...Probabilistic load forecasting(PLF)is able to present the uncertainty information of the future loads.It is the basis of stochastic power system planning and operation.Recent works on PLF mainly focus on how to develop and combine forecasting models,while the feature selection issue has not been thoroughly investigated for PLF.This paper fills the gap by proposing a feature selection method for PLF via sparse L1-norm penalized quantile regression.It can be viewed as an extension from point forecasting-based feature selection to probabilistic forecasting-based feature selection.Since both the number of training samples and the number of features to be selected are very large,the feature selection process is casted as a large-scale convex optimization problem.The alternating direction method of multipliers is applied to solve the problem in an efficient manner.We conduct case studies on the open datasets of ten areas.Numerical results show that the proposed feature selection method can improve the performance of the probabilistic forecasting and outperforms traditional least absolute shrinkage and selection operator method.展开更多
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat...High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices.展开更多
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven...A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.展开更多
文摘传统图像去噪法基于有用信息和噪声频率特性的差别实现去噪,实际中,有用信息和噪声在频带上往往存在重叠,因此,传统去噪法在抑制噪声的同时,往往损失了细节信息,使图像变模糊.本文引入稀疏与低秩矩阵分解模型描述图像去噪问题,基于该模型,采用交替方向法(Alternating direction method,ADM)得到复原图像.实验证明该方法比常用的中值滤波法更有效地抑制了椒盐噪声,同时更好地保持了原始图像的细节信息.
基金Supported by Doctoral Special Fund of State Education Commissionthe National Natural Science Foundation of China,Grant No.59477001 and No.59707002
文摘Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault location method(1982), a new nonlinearly constrained L1-norm problem is developed. It can be solved with less computing time through only one optimization processing. The proposed neural network can be used to solve the analog diagnosis L1 problem. The validity of the proposed neural networks and the fault location L1 method are illustrated by extensive computer simulations.
基金This work is sponsored by National Natural Science Foundation of China (No. 40874056), Important National Science & Technology Specific Projects 2008ZX05023-005-004, and the NCET Fund.Acknowledgements The authors are grateful to Liu Yang, and Zhu Sheng-wang for their constructive remarks on this manuscript.
文摘The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor lateral continuity. In this paper, we propose a constrained L1-norm method for adaptive multiple subtraction by introducing the lateral continuity constraint for the estimated primaries. We measure the lateral continuity using prediction-error filters (PEF). We illustrate our method with the synthetic Pluto dataset. The results show that the constrained L1-norm method can simultaneously attenuate the multiples and preserve the primaries.
基金supported by National Key R&D Program of China(No.2016YFB0900100).
文摘Probabilistic load forecasting(PLF)is able to present the uncertainty information of the future loads.It is the basis of stochastic power system planning and operation.Recent works on PLF mainly focus on how to develop and combine forecasting models,while the feature selection issue has not been thoroughly investigated for PLF.This paper fills the gap by proposing a feature selection method for PLF via sparse L1-norm penalized quantile regression.It can be viewed as an extension from point forecasting-based feature selection to probabilistic forecasting-based feature selection.Since both the number of training samples and the number of features to be selected are very large,the feature selection process is casted as a large-scale convex optimization problem.The alternating direction method of multipliers is applied to solve the problem in an efficient manner.We conduct case studies on the open datasets of ten areas.Numerical results show that the proposed feature selection method can improve the performance of the probabilistic forecasting and outperforms traditional least absolute shrinkage and selection operator method.
基金supported in part by the National Natural Science Foundation of China(61702475,61772493,61902370,62002337)in part by the Natural Science Foundation of Chongqing,China(cstc2019jcyj-msxmX0578,cstc2019jcyjjqX0013)+1 种基金in part by the Chinese Academy of Sciences“Light of West China”Program,in part by the Pioneer Hundred Talents Program of Chinese Academy of Sciencesby Technology Innovation and Application Development Project of Chongqing,China(cstc2019jscx-fxydX0027)。
文摘High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices.
文摘A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.