期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
有监督深度学习的地震资料提高分辨率处理方法
1
作者 李斐 牛文利 +2 位作者 刘达伟 王永刚 黄研 《石油地球物理勘探》 EI CSCD 北大核心 2024年第4期702-713,共12页
地震资料分辨率直接影响后续处理和解释成果精度,因此备受关注。深度学习方法具备自动提取深层特征和出色的非线性逼近能力,在反问题求解中广泛应用。在地震勘探领域,深度卷积网络中的卷积算子与地震数据的褶积模型相吻合,因而有望通过... 地震资料分辨率直接影响后续处理和解释成果精度,因此备受关注。深度学习方法具备自动提取深层特征和出色的非线性逼近能力,在反问题求解中广泛应用。在地震勘探领域,深度卷积网络中的卷积算子与地震数据的褶积模型相吻合,因而有望通过智能化手段显著提升地震资料的分辨率。目前,针对卷积神经网络提高地震资料分辨率方面的研究发展迅速,但问题的核心在于设计适合、有效的网络结构和损失函数。为此,提出一种基于强监督学习的地震资料高分辨率处理方法。该方法充分利用地下结构的空间连续性,借鉴图像超分辨率重建的思想,设计了一种生成对抗网络结构,用以提高地震资料的纵向分辨率;同时,采用L1损失和多尺度结构相似性(MS-SSIM)损失相结合的损失函数提高感知质量,以提高网络的高分辨率处理效果。合成数据和实际地震数据的应用结果显示,相较于常规损失函数,文中采用的损失函数可以显著提升智能算法的处理效果,明显改善地震数据同相轴的连续性,且高频细节信息更丰富,验证了该方法的可行性和有效性。 展开更多
关键词 有监督深度学习 多尺度结构相似性损失 l1损失 生成对抗网络 图像超分辨率重建
下载PDF
DNeStCount:数据相关的拆分注意力机制的编码器-解码器结构的人群计数方法
2
作者 孟晓龙 《计算机与现代化》 2022年第9期68-77,共10页
人群数量估计是人群管理系统的关键,对于预防踩踏事故和引导人群至关重要,已成为一个日益重要的任务和具有挑战性的研究方向。本文提出一种数据相关的拆分注意力机制的编码器-解码器结构的人群计数方法,称为DNe StCount。为应对视频监... 人群数量估计是人群管理系统的关键,对于预防踩踏事故和引导人群至关重要,已成为一个日益重要的任务和具有挑战性的研究方向。本文提出一种数据相关的拆分注意力机制的编码器-解码器结构的人群计数方法,称为DNe StCount。为应对视频监控的尺度变化和透视失真的挑战,将更密集的空洞采样比率应用到密集空洞空间金字塔池化模块DASPP设计中。为提升密度图估计的准确性,将可学习的、数据相关的上采样方法 DUpsampling应用到特征聚合模块DFA设计中。为弥补欧几里德损失可能存在对离群值敏感、训练不稳定等缺点,采用Smooth L1损失设计损失函数。在具有挑战性的数据集上进行的实验和分析表明,本文提出的人群计数方法 DNe St Count与其他主流方法相比更具有竞争力。 展开更多
关键词 人群计数 编码器-解码器结构 拆分注意力机制 密集空洞空间金字塔池化 数据相关上采样 Smooth l1损失
下载PDF
一种基于深度学习的煤矸石检测方法 被引量:9
3
作者 赵学军 李建 《矿业科学学报》 CSCD 2021年第6期730-736,共7页
针对选煤场的煤矸分离中基于计算机视觉的煤矸石检测方法需要复杂的人工特征设计过程,在YOLOv3目标检测模型基础上,提出一种基于深度学习的端到端煤矸石检测方法。采用深度可分离卷积以及转置卷积对模型的骨干网络进行改进,以缩减模型... 针对选煤场的煤矸分离中基于计算机视觉的煤矸石检测方法需要复杂的人工特征设计过程,在YOLOv3目标检测模型基础上,提出一种基于深度学习的端到端煤矸石检测方法。采用深度可分离卷积以及转置卷积对模型的骨干网络进行改进,以缩减模型大小并提高模型运行速度;加入空间金字塔池化模块,改善模型的特征融合能力;引入平衡L1损失函数和距离交并比损失函数,加速模型收敛并提高定位准确性。研究结果表明,所提算法能够实时精准地检测出煤与矸石混合体中的矸石,为提高煤炭质量、改进分拣效率提供有效保障。 展开更多
关键词 深度学习 YOlOv3 平衡l1损失函数 距离交并比损失函数 煤矸石检测
下载PDF
基于DeblurGAN和低秩分解的去运动模糊 被引量:7
4
作者 孙季丰 朱雅婷 王恺 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第1期32-41,50,共11页
为研究出一种快速且有效的图像去模糊方法,基于DeblurGAN提出一种利用条件生成对抗网络实现的端到端图像去运动模糊方法。该方法将DeblurGAN的标准卷积层改成瓶颈结构,并对瓶颈结构中的卷积进行低秩分解,且添加两个残差对称跳跃连接,以... 为研究出一种快速且有效的图像去模糊方法,基于DeblurGAN提出一种利用条件生成对抗网络实现的端到端图像去运动模糊方法。该方法将DeblurGAN的标准卷积层改成瓶颈结构,并对瓶颈结构中的卷积进行低秩分解,且添加两个残差对称跳跃连接,以加速网络收敛。为解决DeblurGAN复原图像不够清晰这个问题,向网络损失函数添加互信息损失和梯度图像L1损失,通过最大化输入图像和其隐含特征间的互信息,使所提取的隐含特征能很好地表征输入信息,从而利用隐含特征还原出清晰图像,而L1损失有利于使复原图像的边缘更明显。同时,通过实验对该方法的有效性进行了验证,并与其他已有的同类算法进行了比较。结果表明:相比DeblurGAN,文中方法峰值信噪比更高,两者的结构相似性指标相当,且文中模型参数量压缩至DeblurGAN的3.25%,去模糊速度提高3倍,模型性能优于已有的其他同类算法。 展开更多
关键词 去运动模糊 生成对抗网络 互信息 低秩分解 对称跳跃连接 互信息损失 梯度图像l1损失
下载PDF
基于深度学习的无人机单目标跟踪
5
作者 谢志丰 周诺 梁军 《计算机技术与发展》 2024年第1期185-192,共8页
无人机单目标跟踪,是指对无人机运动过程中拍摄的视频进行实时处理,进而准确、稳定地跟踪一个移动目标。无人机单目标跟踪受环境影响较大,存在光照变化、背景干扰、目标遮挡、相似目标干扰等问题,使得追踪准确性尚有待提高。针对上述问... 无人机单目标跟踪,是指对无人机运动过程中拍摄的视频进行实时处理,进而准确、稳定地跟踪一个移动目标。无人机单目标跟踪受环境影响较大,存在光照变化、背景干扰、目标遮挡、相似目标干扰等问题,使得追踪准确性尚有待提高。针对上述问题,以SiamRPN++为基础,对其模型和损失函数进行创新性优化。主要研究贡献:在网络骨架(Backbone)方面,通过引入注意力机制网络结构SENet,与原有模型的ResNet50组成Se_ResNet50,提升对单目标跟踪的准确性和有效性;在损失函数方面,使用Balanced L1 Loss提升关键的回归梯度,在分类、整体定位以及精确定位中实现更加平衡的训练;在SiamRPN++的结构基础上,对Backbone和Loss函数进行优化。实验使用ILSVRC2013和ILSVRC2014的DET数据集进行训练,以VOT2018和OTB100为测试数据集检验训练精度。最终追踪准确性在原基础上得到了一定的提高。 展开更多
关键词 无人机 深度学习 目标跟踪 注意力机制 平衡l1损失 SENet
下载PDF
非贪婪的鲁棒性度量学习算法
6
作者 曾凡霞 张文生 《中国图象图形学报》 CSCD 北大核心 2020年第9期1825-1836,共12页
目的度量学习是机器学习与图像处理中依赖于任务的基础研究问题。由于实际应用背景复杂,在大量不可避免的噪声环境下,度量学习方法的性能受到一定影响。为了降低噪声影响,现有方法常用L1距离取代L2距离,这种方式可以同时减小相似样本和... 目的度量学习是机器学习与图像处理中依赖于任务的基础研究问题。由于实际应用背景复杂,在大量不可避免的噪声环境下,度量学习方法的性能受到一定影响。为了降低噪声影响,现有方法常用L1距离取代L2距离,这种方式可以同时减小相似样本和不相似样本的损失尺度,却忽略了噪声对类内和类间样本的不同影响。为此,本文提出了一种非贪婪的鲁棒性度量学习算法——基于L2/L1损失的边缘费歇尔分析(marginal Fisher analysis based on L2/L1 loss,MFA-L2/L1),采用更具判别性的损失,可提升噪声环境下的识别性能。方法在边缘费歇尔分析(marginal Fisher analysis,MFA)方法的基础上,所提模型采用L2距离刻画相似样本损失、L1距离刻画不相似样本损失,同时加大对两类样本的惩罚程度以提升方法的判别性。首先,针对模型非凸带来的求解困难,将目标函数转为迭代两个凸函数之差便于求解;然后,受DCA(difference of convex functions algorithm)思想启发,推导出非贪婪的迭代求解算法,求得最终度量矩阵;最后,算法的理论证明保证了迭代算法的收敛性。结果在5个UCI(University of California Irrine)数据集和7个人脸数据集上进行对比实验:1)在不同程度噪声的5个UCI数据集上,MFA-L2/L1算法最优,且具有较好的抗噪性,尤其在30%噪声程度的Seeds和Wine数据集上,与次优方法LDANgL1(non-greedy L1-norm linear discriminant analysis))相比,MFA-L2/L1的准确率高出9%;2)在不同维度的AR和FEI人脸数据集上的实验,验证了模型采用L1损失、采用L2损失提升了模型的判别性;3)在Senthil、Yale、ORL、Caltech和UMIST人脸数据集的仿真实验中,MFA-L2/L1算法呈现出较强鲁棒性,性能排名第1。结论本文提出了一种基于L2/L1损失的鲁棒性度量学习模型,并推导了一种便捷有效的非贪婪式求解算法,进行了算法收敛性的理论分析。在不同数据集的不同噪声情况下的实 展开更多
关键词 距离度量学习 鲁棒性 非贪婪算法 边缘费歇尔分析(MFA) 分类识别 l2/l1损失
原文传递
基于指导锚框平衡检测模型的录播课堂行为分析研究
7
作者 张冰雪 刘树潜 +1 位作者 熊振海 侯龙锋 《软件》 2020年第12期45-50,66,共7页
该论文将深度学习中目标检测技术结合教室实际场景,对录播课堂中教师以及学生进行行为检测识别,方便后续结合教学模型了解课堂质量。实验融合了Libra R-CNN中的平衡金字塔结构与GA-RPN中的指导生成锚框,在锚框与目标框的回归时均使用平... 该论文将深度学习中目标检测技术结合教室实际场景,对录播课堂中教师以及学生进行行为检测识别,方便后续结合教学模型了解课堂质量。实验融合了Libra R-CNN中的平衡金字塔结构与GA-RPN中的指导生成锚框,在锚框与目标框的回归时均使用平衡L1损失函数以降低相似背景等噪声数据的梯度影响,使得模型对复杂场景有更好的检测效果。根据教师场景与学生场景的不同特征,通过对比主流检测框架在各自场景下的检测效果,综合其检测速度,得出针对教师这种较为单一场景,使用ResNet50作为主干网络的SSD检测模型在保证精准度的同时速度最快;针对学生听课场景,使用该实验设计的GaB R-CNN+ResNeXt101检测效果最好,AP达到了80.9%。 展开更多
关键词 教学行为分析 libra R-CNN 指导锚框 均衡l1损失函数 GaB R-CNN
下载PDF
基于L1范数损失的非平行支持向量回归机
8
作者 刘历铭 巩荣芬 储茂祥 《辽宁科技大学学报》 CAS 2023年第2期101-110,共10页
针对NPSVR训练速度和预测精度问题,提出一种基于L1范数损失的非平行支持向量回归机L1NPSVR模型,用于预测数值输出。L1NPSVR通过求解两个较小规模的凸规划问题,建立一个ε_(1)-不敏感的下界函数和一个ε_(2)-不敏感的上界函数。在L1NPSV... 针对NPSVR训练速度和预测精度问题,提出一种基于L1范数损失的非平行支持向量回归机L1NPSVR模型,用于预测数值输出。L1NPSVR通过求解两个较小规模的凸规划问题,建立一个ε_(1)-不敏感的下界函数和一个ε_(2)-不敏感的上界函数。在L1NPSVR模型中,每个优化问题同时最小化训练样本的L1范数损失和铰链损失,以保证模型的稳定性,减轻噪声和异常值的影响。L1NPSVR通过求解一对更小的优化问题来提高模型的运行效率。仿真结果验证了所提出方法的可行性及有效性。 展开更多
关键词 模式识别 支持向量回归机 非平行支持向量回归机 l1范数损失
下载PDF
一种改进CycleGAN的素描头像彩色化算法
9
作者 廖振 林国军 +5 位作者 黄丹 胡鑫 游松 兰江海 周旭 金若水 《宜宾学院学报》 2024年第6期21-26,共6页
针对现阶段由素描头像生成的彩色头像图像清晰度低、人脸识别率不高和视觉质量不佳等问题,提出一种改进CycleGAN的素描头像彩色化算法:对U-Net自编码器的第一个特征提取模块进行优化,设计一种多尺度自注意力机制特征提取模块,从多个尺... 针对现阶段由素描头像生成的彩色头像图像清晰度低、人脸识别率不高和视觉质量不佳等问题,提出一种改进CycleGAN的素描头像彩色化算法:对U-Net自编码器的第一个特征提取模块进行优化,设计一种多尺度自注意力机制特征提取模块,从多个尺度提取输入图像以减少输入图像的细节信息丢失,将提取的特征用通道堆叠的方式进行特征融合,对融合的特征嵌入SENet自注意力机制,以引导模型对特征重点区域的关注度,最后再降低融合特征的通道维数;对生成头像与真实头像添加L1像素损失和感知损失,以进一步提升生成头像的质量.实验结果表明:较基础模型CycleGAN生成的彩色头像,在CUHK数据集FID值降低了22.23、Rank-1值提高了16%,在AR数据集FID值降低了15.34、Rank-1值提高了9.3%. 展开更多
关键词 CycleGAN 多尺度特征提取 SENet 监督学习 l_1像素损失 感知损失
下载PDF
基于鲁棒损失函数的标签有噪信号调制方式识别 被引量:3
10
作者 王晓波 尹俊平 徐岩 《计算物理》 CSCD 北大核心 2022年第4期386-394,共9页
针对现实信号调制方式标注易发生错误,即训练数据集中信号调制方式标签存在噪声情形,我们选取l模损失函数及其推广形式作为对标签噪声具有鲁棒性的损失函数,结合深度卷积神经网络优良的自动特征提取能力,提出一种针对信号调制方式存在... 针对现实信号调制方式标注易发生错误,即训练数据集中信号调制方式标签存在噪声情形,我们选取l模损失函数及其推广形式作为对标签噪声具有鲁棒性的损失函数,结合深度卷积神经网络优良的自动特征提取能力,提出一种针对信号调制方式存在误判噪声的深度学习算法。该算法在训练数据集合标签噪声率达50%情形下,对信号调制方式的识别准确率依然保持较高水平。相反,对于采用通常的交叉熵作为损失函数的深度卷积神经网络,其已无法对信号调制方式进行分类识别。在公开的数据集上的数值实验表明,所提算法对于标签有噪信号调制方式识别具有较强的鲁棒性。 展开更多
关键词 l1模损失函数 q损失函数 信号调制 有噪标签 信号识别
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部