In this paper, we introduce and study the notion of HB-closed sets in L-topological space. Then, HB-convergence theory for L-molecular nets and L-ideals is established in terms of HB-closedness. Finally, we give a new...In this paper, we introduce and study the notion of HB-closed sets in L-topological space. Then, HB-convergence theory for L-molecular nets and L-ideals is established in terms of HB-closedness. Finally, we give a new definition of fuzzy H-continuous [1] which is called HB-continuity on the basis of the notion of H-bounded L-subsets in L-topological space. Then we give characterizations and properties by making use of HB-converges theory of L-molecular nets and L-ideals.展开更多
In this paper it is proved that for all completely distributive lattices L. the category of L-fuzzifying topological spaces can be wmbedded in the category of L-topological spaces (stratified Chang-Goguen spaces) as a...In this paper it is proved that for all completely distributive lattices L. the category of L-fuzzifying topological spaces can be wmbedded in the category of L-topological spaces (stratified Chang-Goguen spaces) as a simultaneously bireflective and bicoreflective full subcategory.展开更多
文摘In this paper, we introduce and study the notion of HB-closed sets in L-topological space. Then, HB-convergence theory for L-molecular nets and L-ideals is established in terms of HB-closedness. Finally, we give a new definition of fuzzy H-continuous [1] which is called HB-continuity on the basis of the notion of H-bounded L-subsets in L-topological space. Then we give characterizations and properties by making use of HB-converges theory of L-molecular nets and L-ideals.
基金This work is supported by the Natural Science Foundation of Chinathe Foundation for Fellows Returned from Abroadthe Mathematical Center of the Education Ministry of China
文摘In this paper it is proved that for all completely distributive lattices L. the category of L-fuzzifying topological spaces can be wmbedded in the category of L-topological spaces (stratified Chang-Goguen spaces) as a simultaneously bireflective and bicoreflective full subcategory.