In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a se...In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a series which has the factors of the absolute tensor product of the Dirichlet L-functions. This study is a generalization of Akatsuka’s theorem on the Riemann zeta function, and gives a proof of Kurokawa’s prediction proposed in 1992.展开更多
Abstract Let λf(n) be the n-th normalized Fourier coefficient of a holomorphic Hecke eigenform f(z) ∈ Sk(F), In this paper, we established nontrivial estimates for ∑n≤x λf(n^i)λf(n^j),where 1≤ij≤4.
The twisted T-adic exponential sums associated to a polynomial in one variable are studied.An explicit arithmetic polygon in terms of the highest two exponents of the polynomial is proved to be a lower bound of the Ne...The twisted T-adic exponential sums associated to a polynomial in one variable are studied.An explicit arithmetic polygon in terms of the highest two exponents of the polynomial is proved to be a lower bound of the Newton polygon of the C-function of the twisted T-adic exponential sums.This bound gives lower bounds for the Newton polygon of the L-function of twisted p-power order exponential sums.展开更多
Let K be a cyclic quartic number field, and k its quadratic subfield. Let h(L) denote theideal class number of field L. Ten congruenees for h^- = h(K)/h(k) are obtained. In par-ticular, if K = Q((p+s(p^(1/2))))^(1/2) ...Let K be a cyclic quartic number field, and k its quadratic subfield. Let h(L) denote theideal class number of field L. Ten congruenees for h^- = h(K)/h(k) are obtained. In par-ticular, if K = Q((p+s(p^(1/2))))^(1/2) with the prime number p = r^2+s^2 and s is even, then C_1h^-≡B_((p-1)/_4)B_(3(p-1)/4) (mod p) for p≡1 (mod 8); and C_2h^-≡E_((p-5)/8)E_((3p-7)/8)(mod p) for p≡5 (mod 8)where B_n and E_n are the Bernoulli and the Euler numbers. If the real K = Q((v(5+2(5^(1/2))))^(1/2),then C_3h^-≡h(Q((-v)^(1/2))) h (Q((-5v)^(1/2))) (mod 5). If 3 ramifies in K = Q(θ^(1/2)), then C_4h(K)≡h(K~*) (mod 3) with K~* = Q((-3θ^(1/2))). All the above C_i are explicitly given constants.Some relations between the factors of class numbers h^- are also obtained. These results forcyclic quartic fields are an extension of the results for quadratic fields obtained by Ankeny-Artin-Chowla, Kiselev, Carlitz and Lu Hong-wen from 1948 to 1983.展开更多
The authors establish an explicit formula for the generalized Euler NumbersE2n^(x), and obtain some identities and congruences involving the higher'order Euler numbers, Stirling numbers, the central factorial numbe...The authors establish an explicit formula for the generalized Euler NumbersE2n^(x), and obtain some identities and congruences involving the higher'order Euler numbers, Stirling numbers, the central factorial numbers and the values of the Riemann zeta-function.展开更多
Let f(z) be a Hecke-Maass cusp form for SL2(Z), and let L(s, f) be the corresponding automorphic L-function associated to f. For sufficiently large T, let N(σ, T) be the number of zeros p =β + iγ of L(s, ...Let f(z) be a Hecke-Maass cusp form for SL2(Z), and let L(s, f) be the corresponding automorphic L-function associated to f. For sufficiently large T, let N(σ, T) be the number of zeros p =β + iγ of L(s, f) with |γ| ≤T, β〉 σ, the zeros being counted according to multiplicity. In this paper, we get that for 3/4≤ σ≤ 1 - ε, there exists a constant C = C(ε) such that N(σ, T) 〈〈 T2(1-σ)/σ(log T)c, which improves the previous results.展开更多
We compute the n-level correlation of normalized nontrivial zeros of a product of Lfunctions: L(s, π1) … L(s, π k ), where πj, j = 1, …, k, are automorphic cuspidal representations of GL mj (?A). Here the sizes o...We compute the n-level correlation of normalized nontrivial zeros of a product of Lfunctions: L(s, π1) … L(s, π k ), where πj, j = 1, …, k, are automorphic cuspidal representations of GL mj (?A). Here the sizes of the groups GL mj (?A) are not necessarily the same. When these L(s, π j ) are distinct, we prove that their nontrivial zeros are uncorrelated, as predicted by random matrix theory and verified numerically. When L(s, π j ) are not necessarily distinct, our results will lead to a proof that the n-level correlation of normalized nontrivial zeros of the product L-function follows the superposition of Gaussian Unitary Ensemble (GUE) models of individual L-functions and products of lower rank GUEs. The results are unconditional when m 1, …, m k ? 4, but are under Hypothesis H in other cases.展开更多
Let E be a Galois extension of ? of degree l, not necessarily solvable. In this paper we first prove that the L-function L(s, π) attached to an automorphic cuspidal representation π of $ GL_m (E_\mathbb{A} ) $ canno...Let E be a Galois extension of ? of degree l, not necessarily solvable. In this paper we first prove that the L-function L(s, π) attached to an automorphic cuspidal representation π of $ GL_m (E_\mathbb{A} ) $ cannot be factored nontrivially into a product of L-functions over E.Next, we compare the n-level correlation of normalized nontrivial zeros of L(s, π1)…L(s, π k ), where π j , j = 1,…, k, are automorphic cuspidal representations of $ GL_{m_j } (\mathbb{Q}_\mathbb{A} ) $ , with that of L(s,π). We prove a necessary condition for L(s, π) having a factorization into a product of L-functions attached to automorphic cuspidal representations of specific $ GL_{m_j } (\mathbb{Q}_\mathbb{A} ) $ , j = 1,…,k. In particular, if π is not invariant under the action of any nontrivial σ ∈ Gal E/?, then L(s, π) must equal a single L-function attached to a cuspidal representation of $ GL_{m\ell } (\mathbb{Q}_\mathbb{A} ) $ and π has an automorphic induction, provided L(s, π) can factored into a product of L-functions over ?. As E is not assumed to be solvable over ?, our results are beyond the scope of the current theory of base change and automorphic induction.Our results are unconditional when m,m 1,…,m k are small, but are under Hypothesis H and a bound toward the Ramanujan conjecture in other cases.展开更多
In this paper,we prove the conjectured order lower bound for the k-th moment of central values of quadratic twisted self-dual GL(3)L-functions for all k≥1,based on our recent work on the twisted first moment of centr...In this paper,we prove the conjectured order lower bound for the k-th moment of central values of quadratic twisted self-dual GL(3)L-functions for all k≥1,based on our recent work on the twisted first moment of central values in this family of L-functions.展开更多
Let λ(n) be the n-th normalized Fourier coeficient of a holomorphic Hecke eigenform f(z) ∈ Sk(Γ) for the full modular group.In one of his papers,Sankaranarayanan mentioned that it is an open problem to give a non-t...Let λ(n) be the n-th normalized Fourier coeficient of a holomorphic Hecke eigenform f(z) ∈ Sk(Γ) for the full modular group.In one of his papers,Sankaranarayanan mentioned that it is an open problem to give a non-trivial estimate for the sum of λ(n) over cubes,i.e.n x λ(n3).In this paper,we are able to use the analytic properties of symmetric power L-functions to solve his problem.More precisely,we prove that Σn≤zλ(n3)【【 x(3/4 +ε),Σn≤zλ(n4)【【 x(97+ε).展开更多
Let k be a local field.Let I_(v) and I_(v′)be smooth principal series representations of GLn(k)and GL_(n-1)(k),respectively.The Rankin-Selberg integrals yield a continuous bilinear map I_(v)×I_(v′)→C with a ce...Let k be a local field.Let I_(v) and I_(v′)be smooth principal series representations of GLn(k)and GL_(n-1)(k),respectively.The Rankin-Selberg integrals yield a continuous bilinear map I_(v)×I_(v′)→C with a certain invariance property.We study integrals over a certain open orbit that also yield a continuous bilinear map I_(v)×I_(v′)→C with the same invariance property and show that these integrals equal the Rankin-Selberg integrals up to an explicit constant.Similar results are also obtained for Rankin-Selberg integrals for GLn(k)×GLn(k).展开更多
Let D = p1p2 …pm, where p1,p2, ……,pm are distinct rational primes with p1 ≡p2 ≡3(mod 8), pi =1(mod 8)(3 ≤ i ≤ m), and m is any positive integer. In this paper, we give a simple combinatorial criterion fo...Let D = p1p2 …pm, where p1,p2, ……,pm are distinct rational primes with p1 ≡p2 ≡3(mod 8), pi =1(mod 8)(3 ≤ i ≤ m), and m is any positive integer. In this paper, we give a simple combinatorial criterion for the value of the complex L-function of the congruent elliptic curve ED2 : y^2 = x^3- D^2x at s = 1, divided by the period ω defined below, to be exactly divisible by 2^2m-2, the second lowest 2-power with respect to the number of the Gaussian prime factors of D. As a corollary, we obtain a new series of non-congruent numbers whose prime factors can be arbitrarily many. Our result is in accord with the predictions of the conjecture of Birch and Swinnerton-Dyer.展开更多
We study the Gross conjecture for the cyclotomic function field extension k(∧f)/k where k = Fq(t) is the rational function field and f is a monic polynomial in Fq[t].We prove the conjecture in the Fermat curve case(i...We study the Gross conjecture for the cyclotomic function field extension k(∧f)/k where k = Fq(t) is the rational function field and f is a monic polynomial in Fq[t].We prove the conjecture in the Fermat curve case(i.e., when f = t(t - 1)) by a direct calculation. We also prove the case when f is irreducible, which is analogous to the Weil reciprocity law. In the general case, we manage to show the weak version of the Gross conjecture here.展开更多
In this paper we prove zero-density estimates of the large sieve type for the automorphic L-function L(s, f × χ), where f is a holomorphic cusp form and χ(mod q) is a primitive character.
Let λf(n) be the n-th normalized Fourier coefficient of a holomorphic Hecke eigenform f(z) ∈Sk(Γ).We establish that, for any ε > 0,1/Xintegral from n=1 to x|sum λ~2f^((n^2)) from n≤x to - c_2x|2dx ?ε X154/1...Let λf(n) be the n-th normalized Fourier coefficient of a holomorphic Hecke eigenform f(z) ∈Sk(Γ).We establish that, for any ε > 0,1/Xintegral from n=1 to x|sum λ~2f^((n^2)) from n≤x to - c_2x|2dx ?ε X154/101+ε,which improves previous results.展开更多
文摘In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a series which has the factors of the absolute tensor product of the Dirichlet L-functions. This study is a generalization of Akatsuka’s theorem on the Riemann zeta function, and gives a proof of Kurokawa’s prediction proposed in 1992.
基金Supported by National Natural Science Foundation of China(Grant No.11101249)
文摘Abstract Let λf(n) be the n-th normalized Fourier coefficient of a holomorphic Hecke eigenform f(z) ∈ Sk(F), In this paper, we established nontrivial estimates for ∑n≤x λf(n^i)λf(n^j),where 1≤ij≤4.
基金supported by National Natural Science Foundation of China (Grant No.10671015)
文摘The twisted T-adic exponential sums associated to a polynomial in one variable are studied.An explicit arithmetic polygon in terms of the highest two exponents of the polynomial is proved to be a lower bound of the Newton polygon of the C-function of the twisted T-adic exponential sums.This bound gives lower bounds for the Newton polygon of the L-function of twisted p-power order exponential sums.
基金Project supported by the National Natural Science Foundation of China.
文摘Let K be a cyclic quartic number field, and k its quadratic subfield. Let h(L) denote theideal class number of field L. Ten congruenees for h^- = h(K)/h(k) are obtained. In par-ticular, if K = Q((p+s(p^(1/2))))^(1/2) with the prime number p = r^2+s^2 and s is even, then C_1h^-≡B_((p-1)/_4)B_(3(p-1)/4) (mod p) for p≡1 (mod 8); and C_2h^-≡E_((p-5)/8)E_((3p-7)/8)(mod p) for p≡5 (mod 8)where B_n and E_n are the Bernoulli and the Euler numbers. If the real K = Q((v(5+2(5^(1/2))))^(1/2),then C_3h^-≡h(Q((-v)^(1/2))) h (Q((-5v)^(1/2))) (mod 5). If 3 ramifies in K = Q(θ^(1/2)), then C_4h(K)≡h(K~*) (mod 3) with K~* = Q((-3θ^(1/2))). All the above C_i are explicitly given constants.Some relations between the factors of class numbers h^- are also obtained. These results forcyclic quartic fields are an extension of the results for quadratic fields obtained by Ankeny-Artin-Chowla, Kiselev, Carlitz and Lu Hong-wen from 1948 to 1983.
基金the Guangdong Provincial Natural Science Foundation (No.05005928)the National Natural Science Foundation (No.10671155) of P.R.China
文摘The authors establish an explicit formula for the generalized Euler NumbersE2n^(x), and obtain some identities and congruences involving the higher'order Euler numbers, Stirling numbers, the central factorial numbers and the values of the Riemann zeta-function.
基金The author would like to thank Xu Zhao and the referees for carefully reading the manuscript and detailed comments. This work was supported by the National Natural Science Foundation of China (Grant No. 11126151) and the Scientific Foundation of Henan University (Grant No. 2012YBZR030).
文摘Let f(z) be a Hecke-Maass cusp form for SL2(Z), and let L(s, f) be the corresponding automorphic L-function associated to f. For sufficiently large T, let N(σ, T) be the number of zeros p =β + iγ of L(s, f) with |γ| ≤T, β〉 σ, the zeros being counted according to multiplicity. In this paper, we get that for 3/4≤ σ≤ 1 - ε, there exists a constant C = C(ε) such that N(σ, T) 〈〈 T2(1-σ)/σ(log T)c, which improves the previous results.
基金supported by the 973 Programthe National Natural Science Foundation of China (GrantNo. 10531060)+2 种基金Ministry of Education of China (Grant No. 305009)The second author was supportedby the National Security Agency of USA (Grant No. H98230-06-1-0075)The United States government isauthorized to reproduce and distribute reprints notwithstanding any copyright notation herein.
文摘We compute the n-level correlation of normalized nontrivial zeros of a product of Lfunctions: L(s, π1) … L(s, π k ), where πj, j = 1, …, k, are automorphic cuspidal representations of GL mj (?A). Here the sizes of the groups GL mj (?A) are not necessarily the same. When these L(s, π j ) are distinct, we prove that their nontrivial zeros are uncorrelated, as predicted by random matrix theory and verified numerically. When L(s, π j ) are not necessarily distinct, our results will lead to a proof that the n-level correlation of normalized nontrivial zeros of the product L-function follows the superposition of Gaussian Unitary Ensemble (GUE) models of individual L-functions and products of lower rank GUEs. The results are unconditional when m 1, …, m k ? 4, but are under Hypothesis H in other cases.
基金supported by the National Basic Research Program of China, the National Natural Science Foundation of China (Grant No. 10531060)Ministry of Education of China (Grant No. 305009)+1 种基金The second author was supported by the National Security Agency (Grant No. H98230-06-1-0075)The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation herein
文摘Let E be a Galois extension of ? of degree l, not necessarily solvable. In this paper we first prove that the L-function L(s, π) attached to an automorphic cuspidal representation π of $ GL_m (E_\mathbb{A} ) $ cannot be factored nontrivially into a product of L-functions over E.Next, we compare the n-level correlation of normalized nontrivial zeros of L(s, π1)…L(s, π k ), where π j , j = 1,…, k, are automorphic cuspidal representations of $ GL_{m_j } (\mathbb{Q}_\mathbb{A} ) $ , with that of L(s,π). We prove a necessary condition for L(s, π) having a factorization into a product of L-functions attached to automorphic cuspidal representations of specific $ GL_{m_j } (\mathbb{Q}_\mathbb{A} ) $ , j = 1,…,k. In particular, if π is not invariant under the action of any nontrivial σ ∈ Gal E/?, then L(s, π) must equal a single L-function attached to a cuspidal representation of $ GL_{m\ell } (\mathbb{Q}_\mathbb{A} ) $ and π has an automorphic induction, provided L(s, π) can factored into a product of L-functions over ?. As E is not assumed to be solvable over ?, our results are beyond the scope of the current theory of base change and automorphic induction.Our results are unconditional when m,m 1,…,m k are small, but are under Hypothesis H and a bound toward the Ramanujan conjecture in other cases.
基金National Key R&D Program of China(Grant No.2021YFA1000700)NSFC(Grant Nos.12001314 and 12031008)。
文摘In this paper,we prove the conjectured order lower bound for the k-th moment of central values of quadratic twisted self-dual GL(3)L-functions for all k≥1,based on our recent work on the twisted first moment of central values in this family of L-functions.
基金supported by National Natural Science Foundation of China (Grant No.10701048)Natural Science Foundation of Shandong Province (Grant No.ZR2009AM007) and IIFSDU
文摘Let λ(n) be the n-th normalized Fourier coeficient of a holomorphic Hecke eigenform f(z) ∈ Sk(Γ) for the full modular group.In one of his papers,Sankaranarayanan mentioned that it is an open problem to give a non-trivial estimate for the sum of λ(n) over cubes,i.e.n x λ(n3).In this paper,we are able to use the analytic properties of symmetric power L-functions to solve his problem.More precisely,we prove that Σn≤zλ(n3)【【 x(3/4 +ε),Σn≤zλ(n4)【【 x(97+ε).
基金supported by the Natural Science Foundation of Zhejiang Province(Grant No.LZ22A010006)National Natural Science Foundation of China(Grant No.12171421)+2 种基金Feng Su was supported by National Natural Science Foundation of China(Grant No.11901466)the Qinglan Project of Jiangsu Provincesupported by the National Key Research and Development Program of China(Grant No.2020YFA0712600).
文摘Let k be a local field.Let I_(v) and I_(v′)be smooth principal series representations of GLn(k)and GL_(n-1)(k),respectively.The Rankin-Selberg integrals yield a continuous bilinear map I_(v)×I_(v′)→C with a certain invariance property.We study integrals over a certain open orbit that also yield a continuous bilinear map I_(v)×I_(v′)→C with the same invariance property and show that these integrals equal the Rankin-Selberg integrals up to an explicit constant.Similar results are also obtained for Rankin-Selberg integrals for GLn(k)×GLn(k).
文摘Let D = p1p2 …pm, where p1,p2, ……,pm are distinct rational primes with p1 ≡p2 ≡3(mod 8), pi =1(mod 8)(3 ≤ i ≤ m), and m is any positive integer. In this paper, we give a simple combinatorial criterion for the value of the complex L-function of the congruent elliptic curve ED2 : y^2 = x^3- D^2x at s = 1, divided by the period ω defined below, to be exactly divisible by 2^2m-2, the second lowest 2-power with respect to the number of the Gaussian prime factors of D. As a corollary, we obtain a new series of non-congruent numbers whose prime factors can be arbitrarily many. Our result is in accord with the predictions of the conjecture of Birch and Swinnerton-Dyer.
基金supported by the National Natural Sciencc Foundation of China(Grant No.10401018)the Scientifc Research Foundation for the Returmed Overseas Chinese Scholars,State Education Ministy.
文摘We study the Gross conjecture for the cyclotomic function field extension k(∧f)/k where k = Fq(t) is the rational function field and f is a monic polynomial in Fq[t].We prove the conjecture in the Fermat curve case(i.e., when f = t(t - 1)) by a direct calculation. We also prove the case when f is irreducible, which is analogous to the Weil reciprocity law. In the general case, we manage to show the weak version of the Gross conjecture here.
基金Mathematical Tianyuan Foundation(No.10826028)National Natural Science Foundation of China(Grant No.10771127,10571107)
文摘In this paper we prove zero-density estimates of the large sieve type for the automorphic L-function L(s, f × χ), where f is a holomorphic cusp form and χ(mod q) is a primitive character.
基金supported by National Natural Science Foundation of China(Grant No.11101249)
文摘Let λf(n) be the n-th normalized Fourier coefficient of a holomorphic Hecke eigenform f(z) ∈Sk(Γ).We establish that, for any ε > 0,1/Xintegral from n=1 to x|sum λ~2f^((n^2)) from n≤x to - c_2x|2dx ?ε X154/101+ε,which improves previous results.