How to compose existing web services automatically and to guarantee the correctness of the design (e.g. freeness of deadlock and unspecified reception, and temporal constraints) is an important and challenging probl...How to compose existing web services automatically and to guarantee the correctness of the design (e.g. freeness of deadlock and unspecified reception, and temporal constraints) is an important and challenging problem in web services. Most existing approaches require a detailed specification of the desired behaviors of a composite service beforehand and then perform certain formal verification to guarantee the correctness of the design, which makes the composition process both complex and time-consuming. In this paper, we propose a novel approach, referred to as AutoSyn to compose web services, where the correctness is guaranteed in the synthesis process. For a given set of services, a composite service is automatically constructed based on L* algorithm, which guarantees that the composite service is the most general way of coordinating services so that the correctness is ensured. We show the soundness and completeness of our solution and give a set of optimization techniques for reducing the time consumption. We have implemented a prototype system of AutoSyn and evaluated the effectiveness and efficiency of AutoSyn through an experimental study.展开更多
The original online version of this article (Zengyong Liang (2020) Solutions of Indefinite Equations, Volume 10(9), 540-544, doi: https://doi.org/10.4236/apm.2020.109033) unfortunately contains some mistakes. The auth...The original online version of this article (Zengyong Liang (2020) Solutions of Indefinite Equations, Volume 10(9), 540-544, doi: https://doi.org/10.4236/apm.2020.109033) unfortunately contains some mistakes. The author wishes to correct the errors. Sections 5, 6, 7, and 8 are supplemented here.展开更多
Indefinite equation is an unsolved problem in number theory. Through explo-ration, the author has been able to use a simple elementary algebraic method to solve the solutions of all three variable indefinite equations...Indefinite equation is an unsolved problem in number theory. Through explo-ration, the author has been able to use a simple elementary algebraic method to solve the solutions of all three variable indefinite equations. In this paper, we will introduce and prove the solutions of Pythagorean equation, Fermat’s the-orem, Bill equation and so on.展开更多
Broadband wireless channels are often time dispersive and become strongly frequency selective in delay spread domain. Commonly, these channels are composed of a few dominant coefficients and a large part of coefficien...Broadband wireless channels are often time dispersive and become strongly frequency selective in delay spread domain. Commonly, these channels are composed of a few dominant coefficients and a large part of coefficients are approximately zero or under noise floor. To exploit sparsity of multi-path channels (MPCs), there are various methods have been proposed. They are, namely, greedy algorithms, iterative algorithms, and convex program. The former two algorithms are easy to be implemented but not stable;on the other hand, the last method is stable but difficult to be implemented as practical channel estimation problems be-cause of computational complexity. In this paper, we introduce a novel channel estimation strategy using smooth L0 (SL0) algorithm which combines stable and low complexity. Computer simulations confirm the effectiveness of the introduced algorithm. We also give various simulations to verify the sensing training signal method.展开更多
基金the National High-Tech Research & Development Program of China (Grant No. 2007AA010301)the National Basic Research Program of China (Grant No. 2005CB321803)+2 种基金the National Natural Science Foundation of China for Distinguished Young Scholar (Grant No. 60525209)the National Natural Science Foundation of China (NSFC)/Research Grants Council (RGC) Joint Research Project (Grant No. 60731160632)the Program for New Century Excellent Talents in University (Grant No. NCET-05-0186)
文摘How to compose existing web services automatically and to guarantee the correctness of the design (e.g. freeness of deadlock and unspecified reception, and temporal constraints) is an important and challenging problem in web services. Most existing approaches require a detailed specification of the desired behaviors of a composite service beforehand and then perform certain formal verification to guarantee the correctness of the design, which makes the composition process both complex and time-consuming. In this paper, we propose a novel approach, referred to as AutoSyn to compose web services, where the correctness is guaranteed in the synthesis process. For a given set of services, a composite service is automatically constructed based on L* algorithm, which guarantees that the composite service is the most general way of coordinating services so that the correctness is ensured. We show the soundness and completeness of our solution and give a set of optimization techniques for reducing the time consumption. We have implemented a prototype system of AutoSyn and evaluated the effectiveness and efficiency of AutoSyn through an experimental study.
文摘The original online version of this article (Zengyong Liang (2020) Solutions of Indefinite Equations, Volume 10(9), 540-544, doi: https://doi.org/10.4236/apm.2020.109033) unfortunately contains some mistakes. The author wishes to correct the errors. Sections 5, 6, 7, and 8 are supplemented here.
文摘Indefinite equation is an unsolved problem in number theory. Through explo-ration, the author has been able to use a simple elementary algebraic method to solve the solutions of all three variable indefinite equations. In this paper, we will introduce and prove the solutions of Pythagorean equation, Fermat’s the-orem, Bill equation and so on.
文摘Broadband wireless channels are often time dispersive and become strongly frequency selective in delay spread domain. Commonly, these channels are composed of a few dominant coefficients and a large part of coefficients are approximately zero or under noise floor. To exploit sparsity of multi-path channels (MPCs), there are various methods have been proposed. They are, namely, greedy algorithms, iterative algorithms, and convex program. The former two algorithms are easy to be implemented but not stable;on the other hand, the last method is stable but difficult to be implemented as practical channel estimation problems be-cause of computational complexity. In this paper, we introduce a novel channel estimation strategy using smooth L0 (SL0) algorithm which combines stable and low complexity. Computer simulations confirm the effectiveness of the introduced algorithm. We also give various simulations to verify the sensing training signal method.