基于网格曲面特征线的稀疏分布,提出一种优化的特征线提取算法。对于给定的网格,在每个面上计算一个值或向量作为输入。对输入的度量建立 L 0 优化模型,使其在网格边上的跃变尽可能少且优化前后的变化较小。给出基于变量分裂技术与罚函...基于网格曲面特征线的稀疏分布,提出一种优化的特征线提取算法。对于给定的网格,在每个面上计算一个值或向量作为输入。对输入的度量建立 L 0 优化模型,使其在网格边上的跃变尽可能少且优化前后的变化较小。给出基于变量分裂技术与罚函数方法的交替方向优化算法,并引入一种迭代的策略提升解的稀疏性,以取得更高质量的特征线。实验结果表明,该算法能有效提取网格曲面的特征线,与Crest lines算法、变分算法等相比,提高了特征线提取的质量和带噪数据的鲁棒性。展开更多
文摘基于网格曲面特征线的稀疏分布,提出一种优化的特征线提取算法。对于给定的网格,在每个面上计算一个值或向量作为输入。对输入的度量建立 L 0 优化模型,使其在网格边上的跃变尽可能少且优化前后的变化较小。给出基于变量分裂技术与罚函数方法的交替方向优化算法,并引入一种迭代的策略提升解的稀疏性,以取得更高质量的特征线。实验结果表明,该算法能有效提取网格曲面的特征线,与Crest lines算法、变分算法等相比,提高了特征线提取的质量和带噪数据的鲁棒性。