期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An Effective Runge-Kutta Optimizer Based on Adaptive Population Size and Search Step Size
1
作者 Ala Kana Imtiaz Ahmad 《Computers, Materials & Continua》 SCIE EI 2023年第9期3443-3464,共22页
A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider int... A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider interest in solving optimization problems.However,in high-dimensional problems,the search capabilities,convergence speed,and runtime of RUN deteriorate.This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN.Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms.Unlike the original RUN where population size is fixed throughout the search process,Adaptive-RUN automatically adjusts population size according to two population size adaptation techniques,which are linear staircase reduction and iterative halving,during the search process to achieve a good balance between exploration and exploitation characteristics.In addition,the proposed methodology employs an adaptive search step size technique to determine a better solution in the early stages of evolution to improve the solution quality,fitness,and convergence speed of the original RUN.Adaptive-RUN performance is analyzed over 23 IEEE CEC-2017 benchmark functions for two cases,where the first one applies linear staircase reduction with adaptive search step size(LSRUN),and the second one applies iterative halving with adaptive search step size(HRUN),with the original RUN.To promote green computing,the carbon footprint metric is included in the performance evaluation in addition to runtime and fitness.Simulation results based on the Friedman andWilcoxon tests revealed that Adaptive-RUN can produce high-quality solutions with lower runtime and carbon footprint values as compared to the original RUN and three recent metaheuristics.Therefore,with its higher computation efficiency,Adaptive-RUN is a much more favorable choice as compared to RUN in time stringent applications. 展开更多
关键词 Optimization runge kutta(run) metaheuristic algorithm exploration EXPLOITATION population size adaptation adaptive search step size
下载PDF
基于增强型龙格库塔优化算法的跳频序列设计 被引量:1
2
作者 张毅恒 刘以安 宋海凌 《计算机工程》 CAS CSCD 北大核心 2024年第4期267-276,共10页
跳频技术具有优秀的抗干扰性能和多址组网性能,跳频序列(FHS)作为其关键,在设计时面临性能指标差、难以兼顾多指标的问题。提出一种基于增强型龙格库塔优化算法(ERUN)的跳频序列设计方法。利用跳频序列的汉明相关性、复杂度、均匀性和... 跳频技术具有优秀的抗干扰性能和多址组网性能,跳频序列(FHS)作为其关键,在设计时面临性能指标差、难以兼顾多指标的问题。提出一种基于增强型龙格库塔优化算法(ERUN)的跳频序列设计方法。利用跳频序列的汉明相关性、复杂度、均匀性和平均跳频间隔构建目标函数,建立适用于启发式优化算法的跳频序列设计模型。针对龙格库塔优化算法(RUN)在复杂优化问题上收敛速度慢、寻优精度差的问题,提出增强型龙格库塔优化算法。利用混沌反向学习机制提高初始种群质量,基于二次插值法得到更好的个体更新方向,并根据自适应t分布扰动帮助种群跳出局部最优。在6个基准测试函数和目标函数上的测试结果表明,与RUN的3个最新变体相比,ERUN具有更快的收敛速度和更高的解精度。将得到的跳频序列应用于跳频系统中,实验结果表明,该方法在固定干扰环境下误码率为4%左右,在变化干扰环境下误码率没有明显上升,展现出了较强的抗干扰能力和复杂环境适应能力。 展开更多
关键词 抗干扰 跳频序列 龙格库塔优化算法 二次插值 自适应t分布
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部