Y-shaped Kekulébond textures in a honeycomb lattice on a graphene-copper superlattice have recently been experimentally revealed.In this paper,the effects of such a bond modulation on the transport coefficients o...Y-shaped Kekulébond textures in a honeycomb lattice on a graphene-copper superlattice have recently been experimentally revealed.In this paper,the effects of such a bond modulation on the transport coefficients of Kekulé-patterned graphene are investigated in the presence of a perpendicular magnetic field.Analytical expressions are derived for the Hall and longitudinal conductivities using the Kubo formula.It is found that the Y-shaped Kekulébond texture lifts the valley degeneracy of all Landau levels except that of the zero mode,leading to additional plateaus in the Hall conductivity accompanied by a split of the corresponding peaks in the longitudinal conductivity.Consequently,the Hall conductivity is quantized as±ne^(2)/h for n=2,4,6,8,10,...,excluding some plateaus that disappear due to the complete overlap of the Landau levels of different cones.These results also suggest that DC Hall conductivity measurements will allow us to determine the Kekulébond texture amplitude.展开更多
Starting from the Kubo formula and the QCD low energy theorem, we study the the bulk viscosity of hot dense quark matter in the PNJL model from the equation of state. We show that the bulk viscosity has a sharp peak n...Starting from the Kubo formula and the QCD low energy theorem, we study the the bulk viscosity of hot dense quark matter in the PNJL model from the equation of state. We show that the bulk viscosity has a sharp peak near the chiral phase transition, and that the ratio of bulk viscosity over entropy rises dramatically in the vicinity of the phase transition. These results agree with those from the lattice and other model calculations. In addition, we show that the increase of chemical potential raises the bulk viscosity.展开更多
Based on the Kubo formula for an electron tunneling junction, we revisit the nonequilibrium transport properties through a quantum dot. Since the Fermi level of the quantum dot is set by the conduction electrons of th...Based on the Kubo formula for an electron tunneling junction, we revisit the nonequilibrium transport properties through a quantum dot. Since the Fermi level of the quantum dot is set by the conduction electrons of the leads, we calculate the electron current from the left side by assuming the quantum dot coupled to the right lead as another side of the tunneling junction, and the other way round is used to calculate the current from the right side. By symmetrizing these two currents, an effective local density states on the dot can be obtained, and is discussed at high and low temperatures, respectively.展开更多
We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions. Normal thermal conductivity that is independent of system size is observed when the latt...We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions. Normal thermal conductivity that is independent of system size is observed when the lattice chains are long enough. Because only the harmonic interactions are involved, the result confirms, without ambiguity, that asymmetry plays a key role in normal thermal conduction in one-dimensional momentum conserving lattices. Both equilibrium and nonequilibrium simulations are performed to support the conclusion.展开更多
文摘Y-shaped Kekulébond textures in a honeycomb lattice on a graphene-copper superlattice have recently been experimentally revealed.In this paper,the effects of such a bond modulation on the transport coefficients of Kekulé-patterned graphene are investigated in the presence of a perpendicular magnetic field.Analytical expressions are derived for the Hall and longitudinal conductivities using the Kubo formula.It is found that the Y-shaped Kekulébond texture lifts the valley degeneracy of all Landau levels except that of the zero mode,leading to additional plateaus in the Hall conductivity accompanied by a split of the corresponding peaks in the longitudinal conductivity.Consequently,the Hall conductivity is quantized as±ne^(2)/h for n=2,4,6,8,10,...,excluding some plateaus that disappear due to the complete overlap of the Landau levels of different cones.These results also suggest that DC Hall conductivity measurements will allow us to determine the Kekulébond texture amplitude.
文摘Starting from the Kubo formula and the QCD low energy theorem, we study the the bulk viscosity of hot dense quark matter in the PNJL model from the equation of state. We show that the bulk viscosity has a sharp peak near the chiral phase transition, and that the ratio of bulk viscosity over entropy rises dramatically in the vicinity of the phase transition. These results agree with those from the lattice and other model calculations. In addition, we show that the increase of chemical potential raises the bulk viscosity.
基金国家自然科学基金,the Special Fund for State Key Basic Research Projects of China under
文摘Based on the Kubo formula for an electron tunneling junction, we revisit the nonequilibrium transport properties through a quantum dot. Since the Fermi level of the quantum dot is set by the conduction electrons of the leads, we calculate the electron current from the left side by assuming the quantum dot coupled to the right lead as another side of the tunneling junction, and the other way round is used to calculate the current from the right side. By symmetrizing these two currents, an effective local density states on the dot can be obtained, and is discussed at high and low temperatures, respectively.
基金the National Natural Science Foundation of China(Grants Nos.10925525 and 10805036)
文摘We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions. Normal thermal conductivity that is independent of system size is observed when the lattice chains are long enough. Because only the harmonic interactions are involved, the result confirms, without ambiguity, that asymmetry plays a key role in normal thermal conduction in one-dimensional momentum conserving lattices. Both equilibrium and nonequilibrium simulations are performed to support the conclusion.