The self similar sets satisfying the open condition have been studied. An estimation of fractal, by the definition can only give the upper limit of its Hausdorff measure. So to judge if such an upper limit is its exac...The self similar sets satisfying the open condition have been studied. An estimation of fractal, by the definition can only give the upper limit of its Hausdorff measure. So to judge if such an upper limit is its exact value or not is important. A negative criterion has been given. As a consequence, the Marion’s conjecture on the Hausdorff meas\| ure of the Koch curve has been proved invalid.展开更多
In this paper, we introduce a K Hölder p-adic derivative that can be applied to fractal curves with different Hölder exponent K. We will show that the Koch curve satisfies the Hölder conditi...In this paper, we introduce a K Hölder p-adic derivative that can be applied to fractal curves with different Hölder exponent K. We will show that the Koch curve satisfies the Hölder condition with exponent and has a 4-adic arithmetic-analytic representation. We will prove that the Koch curve has exact -Hölder 4-adic derivative.展开更多
文摘The self similar sets satisfying the open condition have been studied. An estimation of fractal, by the definition can only give the upper limit of its Hausdorff measure. So to judge if such an upper limit is its exact value or not is important. A negative criterion has been given. As a consequence, the Marion’s conjecture on the Hausdorff meas\| ure of the Koch curve has been proved invalid.
文摘In this paper, we introduce a K Hölder p-adic derivative that can be applied to fractal curves with different Hölder exponent K. We will show that the Koch curve satisfies the Hölder condition with exponent and has a 4-adic arithmetic-analytic representation. We will prove that the Koch curve has exact -Hölder 4-adic derivative.