期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
N-gram模型综述 被引量:21
1
作者 尹陈 吴敏 《计算机系统应用》 2018年第10期33-38,共6页
N-gram模型是自然语言处理中最常用的语言模型之一,广泛应用于语音识别、手写识别、拼写纠错、机器翻译和搜索引擎等众多任务.但是N-gram模型在训练和应用时经常会出现零概率问题,导致无法获得良好的语言模型,因此出现了拉普拉斯平滑、... N-gram模型是自然语言处理中最常用的语言模型之一,广泛应用于语音识别、手写识别、拼写纠错、机器翻译和搜索引擎等众多任务.但是N-gram模型在训练和应用时经常会出现零概率问题,导致无法获得良好的语言模型,因此出现了拉普拉斯平滑、卡茨回退和Kneser-Ney平滑等平滑方法.在介绍了这些平滑方法的基本原理后,使用困惑度作为度量标准去比较了基于这几种平滑方法所训练出的语言模型. 展开更多
关键词 N-GRAM模型 拉普拉斯平滑 卡茨回退 kneser-ney平滑 困惑度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部