期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
N-gram模型综述
被引量:
21
1
作者
尹陈
吴敏
《计算机系统应用》
2018年第10期33-38,共6页
N-gram模型是自然语言处理中最常用的语言模型之一,广泛应用于语音识别、手写识别、拼写纠错、机器翻译和搜索引擎等众多任务.但是N-gram模型在训练和应用时经常会出现零概率问题,导致无法获得良好的语言模型,因此出现了拉普拉斯平滑、...
N-gram模型是自然语言处理中最常用的语言模型之一,广泛应用于语音识别、手写识别、拼写纠错、机器翻译和搜索引擎等众多任务.但是N-gram模型在训练和应用时经常会出现零概率问题,导致无法获得良好的语言模型,因此出现了拉普拉斯平滑、卡茨回退和Kneser-Ney平滑等平滑方法.在介绍了这些平滑方法的基本原理后,使用困惑度作为度量标准去比较了基于这几种平滑方法所训练出的语言模型.
展开更多
关键词
N-GRAM模型
拉普拉斯平滑
卡茨回退
kneser
-
ney
平滑
困惑度
下载PDF
职称材料
题名
N-gram模型综述
被引量:
21
1
作者
尹陈
吴敏
机构
中国科学技术大学软件学院
出处
《计算机系统应用》
2018年第10期33-38,共6页
文摘
N-gram模型是自然语言处理中最常用的语言模型之一,广泛应用于语音识别、手写识别、拼写纠错、机器翻译和搜索引擎等众多任务.但是N-gram模型在训练和应用时经常会出现零概率问题,导致无法获得良好的语言模型,因此出现了拉普拉斯平滑、卡茨回退和Kneser-Ney平滑等平滑方法.在介绍了这些平滑方法的基本原理后,使用困惑度作为度量标准去比较了基于这几种平滑方法所训练出的语言模型.
关键词
N-GRAM模型
拉普拉斯平滑
卡茨回退
kneser
-
ney
平滑
困惑度
Keywords
N-gram
model
Laplace
smoothing
Katz
back-off
kneser
-
ney
smoothing
perplexity
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
N-gram模型综述
尹陈
吴敏
《计算机系统应用》
2018
21
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部