<strong>Background:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> Intraoperative surgical planning tools (ISPTs) used in curren...<strong>Background:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> Intraoperative surgical planning tools (ISPTs) used in current-generation robotic arm-assisted total knee arthroplasty (RTKA) systems (such as Navio</span><sup><span style="font-size:12px;font-family:Verdana;"><span lang="ZH-CN" style="font-size:12pt;font-family:宋体;">®</span></span></sup><span style="font-family:Verdana;"> and MAKO</span><sup><span style="font-size:12px;font-family:Verdana;"><span lang="ZH-CN" style="font-size:12pt;font-family:宋体;">®</span></span></sup><span style="font-family:Verdana;">) involve employment of postoperative passive joint balancing. This results in improper ligament tension, which may negatively impact joint stability, which, in turn, may adversely affect patient function after TKA. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> A simulation-enhanced ISPT (SEISPT) that provides insights relating to postoperative active joint mechanics was developed. This involved four steps: 1) validation of a multi-body musculoskeletal model;2) optimization of the validated model;3) use of the validated and optimized model to derive knee performance equations (KPEs), which are equations that relate implant component characteristics to implant component biomechanical responses;and 4) optimization of the KPEs with respect to these responses. In a proof-of-concept study, KPEs that involved two</span></span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">com</span><span style="font-family:Verdana;">- </span><span style="font-family:;" "=""><span style="font-family:Verdana;">ponent biomechanical responses that have been shown to strongly correlate with poor proprioception (a common patient complaint post-TKA) were used to calculate optimal positions and orientations of the femoral and tibial components in the TKA design implanted in one subject (as reported in a publicly-available dataset). </span><b><span st展开更多
文摘<strong>Background:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> Intraoperative surgical planning tools (ISPTs) used in current-generation robotic arm-assisted total knee arthroplasty (RTKA) systems (such as Navio</span><sup><span style="font-size:12px;font-family:Verdana;"><span lang="ZH-CN" style="font-size:12pt;font-family:宋体;">®</span></span></sup><span style="font-family:Verdana;"> and MAKO</span><sup><span style="font-size:12px;font-family:Verdana;"><span lang="ZH-CN" style="font-size:12pt;font-family:宋体;">®</span></span></sup><span style="font-family:Verdana;">) involve employment of postoperative passive joint balancing. This results in improper ligament tension, which may negatively impact joint stability, which, in turn, may adversely affect patient function after TKA. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> A simulation-enhanced ISPT (SEISPT) that provides insights relating to postoperative active joint mechanics was developed. This involved four steps: 1) validation of a multi-body musculoskeletal model;2) optimization of the validated model;3) use of the validated and optimized model to derive knee performance equations (KPEs), which are equations that relate implant component characteristics to implant component biomechanical responses;and 4) optimization of the KPEs with respect to these responses. In a proof-of-concept study, KPEs that involved two</span></span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">com</span><span style="font-family:Verdana;">- </span><span style="font-family:;" "=""><span style="font-family:Verdana;">ponent biomechanical responses that have been shown to strongly correlate with poor proprioception (a common patient complaint post-TKA) were used to calculate optimal positions and orientations of the femoral and tibial components in the TKA design implanted in one subject (as reported in a publicly-available dataset). </span><b><span st