随着社会经济的不断发展,大空间建筑逐渐步入人们的生活中,对大空间建筑的消防技术要求逐渐提高,火焰识别技术已成为近年来研究的热点。为实现单帧图像的火焰检测,本文首先提出了一种基于RGB和HSI颜色模型的混合判据,它既保留了RGB模型...随着社会经济的不断发展,大空间建筑逐渐步入人们的生活中,对大空间建筑的消防技术要求逐渐提高,火焰识别技术已成为近年来研究的热点。为实现单帧图像的火焰检测,本文首先提出了一种基于RGB和HSI颜色模型的混合判据,它既保留了RGB模型中的直观判据,又加入了HSI模型中对于饱和度判据,效果优于两者单独使用或单纯结合的情况;同时利用基于加权欧式距离的方法对图像进行特殊灰度化处理,通过Kmeans++颜色聚类,完成火焰图像的分割,获得最终感兴趣区域;提取该区域几何轮廓并利用不规则度和形态比例等几何判据,对待检测图像进行最终的识别。为评估所提出检测方法的性能,选取典型火焰图像和非火焰图像,在Visual Studio 2013环境下进行对比实验,通过对运行时间、提取偏差率和识别误报率等结果的分析,证明了所提方法的有效性和可实现性。本文所提出的方法具有良好的检测效果,能够保证火焰提取和识别的精度,同时兼顾实时性的要求,可以应用在实际的大空间消防项目中。展开更多
文摘随着社会经济的不断发展,大空间建筑逐渐步入人们的生活中,对大空间建筑的消防技术要求逐渐提高,火焰识别技术已成为近年来研究的热点。为实现单帧图像的火焰检测,本文首先提出了一种基于RGB和HSI颜色模型的混合判据,它既保留了RGB模型中的直观判据,又加入了HSI模型中对于饱和度判据,效果优于两者单独使用或单纯结合的情况;同时利用基于加权欧式距离的方法对图像进行特殊灰度化处理,通过Kmeans++颜色聚类,完成火焰图像的分割,获得最终感兴趣区域;提取该区域几何轮廓并利用不规则度和形态比例等几何判据,对待检测图像进行最终的识别。为评估所提出检测方法的性能,选取典型火焰图像和非火焰图像,在Visual Studio 2013环境下进行对比实验,通过对运行时间、提取偏差率和识别误报率等结果的分析,证明了所提方法的有效性和可实现性。本文所提出的方法具有良好的检测效果,能够保证火焰提取和识别的精度,同时兼顾实时性的要求,可以应用在实际的大空间消防项目中。
文摘日前光伏发电功率预测是电网经济调度的重要依据。针对K均值(K-means)聚类算法初始聚类中心和聚类数目不易确定的问题和传统神经网络训练参数较多、易陷入局部最优等缺陷,构建了DPK-means和极限学习机(extreme learning machine,ELM)的组合预测算法实现日前光伏发电功率的预测模型。首先,采用密度峰值法(density peaks clustering,DPC)对K-means聚类进行优化,解决了Kmeans算法初始聚类中心和聚类数目不易确定的问题。然后,在利用DPK-means算法对历史气象数据样本聚类分析的基础上,建立ELM预测模型实现日前光伏发电功率的预测。经实测数据验证可知,所提出的组合预测算法可得到较好的预测结果,具有较强的实用性。