Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program redu...Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.展开更多
Iron element is one of the main impurities in wet-process phosphoric acid and it has a significant impact on the subsequent phosphorus chemical products. This paper studied the feasibility of using Sinco-430 cation ex...Iron element is one of the main impurities in wet-process phosphoric acid and it has a significant impact on the subsequent phosphorus chemical products. This paper studied the feasibility of using Sinco-430 cation exchange resin for iron removal from phosphoric acid. The specific surface area and the total exchange capacity of resin were 8.91 m2·g-1 and 5.18 mmol·g-1, respectively. The sorption mechanism was determined by FTIR and XPS and the results indicated that iron was combined with-SO3 H in resin. The removal process was studied as a function of temperature, H3 PO4 content and mass ratio between resin and solution. The unit mass of resin to remove iron was 0.058 g·g-1 resin when the operating parameters were T = 50 ℃, H3 PO4 content = 27.61 wt%and S/L = 0.1, respectively. Kinetics study demonstrated that pseudo-second-order reaction model fits this study best and the calculated activation energy of overall reaction is 29.10 kJ·mol-1. The overall reaction process was mainly controlled by pore diffusion.展开更多
Activated carbons calcined at 400˚C and 600˚C (AC-400 and AC-600), prepared using palm nuts, collected in the town of Franceville in Gabon, were used to study the dynamic adsorption of MnO<sub>4</sub>-<...Activated carbons calcined at 400˚C and 600˚C (AC-400 and AC-600), prepared using palm nuts, collected in the town of Franceville in Gabon, were used to study the dynamic adsorption of MnO<sub>4</sub>-</sup> ions in acidic media on fixed bed column and on the kinetic modeling of experimental data of breakthrough curves of MnO<sub>4</sub>-</sup> ions obtained. Results on the adsorption of MnO<sub>4</sub>-</sup> ions in fixed-bed dynamics obtained on AC-400 and AC-600 adsorbents beds indicated that the AC-400 bed appears to be the most efficient in removing MnO<sub>4</sub>-</sup> ions in acidic media. Indeed, the adsorbed amounts, the adsorbed capacities at saturation and the elimination percentage of MnO<sub>4</sub>-</sup> ions obtained with AC-400 (31.24 mg;52.06 mg·g<sup>-1</sup> and 41.65% respectively) were higher compared to those obtained with AC-600 (9.87 mg;16.45 mg·g<sup>-1</sup> and 17.79% respectively). The breakthrough curves kinetic modeling revealed that the Thomas model and the pseudo-first-order kinetic model were the most suitable models to describe the adsorption of MnO<sub>4</sub>-</sup> ions on adsorbents studied in our experimental conditions. The results of the intraparticle diffusion model showed that intraparticle diffusion was involved in the adsorption mechanism of MnO<sub>4</sub>-</sup> ions on investigated adsorbents and was not the limiting step and the only process controlling MnO<sub>4</sub>-</sup> ions adsorption. In contrast to AC-400, the intraparticle diffusion on AC-600 bed plays an important role in the adsorption mechanism of MnO<sub>4</sub>-</sup> ions.展开更多
Antibiotic-loaded poly (methyl methacrylate) bone cement (ALBC) is widely used for anchoring joint replacements as a means of reducing the potential for peri-prosthetic joint infection (primary cases) and treating a p...Antibiotic-loaded poly (methyl methacrylate) bone cement (ALBC) is widely used for anchoring joint replacements as a means of reducing the potential for peri-prosthetic joint infection (primary cases) and treating a patient who has an infected joint replacement (revision cases). One shortcoming of the cement is the high maximum exothermic temperature experienced upon polymerization (Tmax), a phenomenon that, it has been postulated, may cause or be implicated in thermal necrosis of peri-prosthetic tissues. There are many reports in the literature on methods of reducing Tmax, with one such study involving the addition of a phase change material (microencapsulated paraffin) (MEPAR) to the cement powder or adding a chain-stopping chemical (1-dodecyl mercaptan) (DDM) to the liquid. In that report, the results of gentamicin elution tests were presented. In the present work, those results were used to calculate various indices of gentamicin elution kinetics, namely 1) diffusion coefficient (Dgent);and 2) values of the coefficients in four equations that are widely used to model antibiotic elution from ALBCs. We found 1) the difference in Dgent of either a MEPAR- or DDM-containing formulation, on the one hand, and that of the control cement, on the other, was not significant;and 2) a consistent trend in the value of only one coefficient in one of the four model equations, with this change suggesting insignificant difference in gentamicin elution mechanism between an experimental cement formulation and the control cement. The implications of these findings for guiding selection of additives that simultaneously produce significant reduction of Tmax but minimal effect on gentamicin elution kinetics are discussed. This guide is a novel contribution to the literature.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51104014 and 51134008)
文摘Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.
基金Supported by the National Basic Research Program of China(2016YFD0200404)
文摘Iron element is one of the main impurities in wet-process phosphoric acid and it has a significant impact on the subsequent phosphorus chemical products. This paper studied the feasibility of using Sinco-430 cation exchange resin for iron removal from phosphoric acid. The specific surface area and the total exchange capacity of resin were 8.91 m2·g-1 and 5.18 mmol·g-1, respectively. The sorption mechanism was determined by FTIR and XPS and the results indicated that iron was combined with-SO3 H in resin. The removal process was studied as a function of temperature, H3 PO4 content and mass ratio between resin and solution. The unit mass of resin to remove iron was 0.058 g·g-1 resin when the operating parameters were T = 50 ℃, H3 PO4 content = 27.61 wt%and S/L = 0.1, respectively. Kinetics study demonstrated that pseudo-second-order reaction model fits this study best and the calculated activation energy of overall reaction is 29.10 kJ·mol-1. The overall reaction process was mainly controlled by pore diffusion.
文摘Activated carbons calcined at 400˚C and 600˚C (AC-400 and AC-600), prepared using palm nuts, collected in the town of Franceville in Gabon, were used to study the dynamic adsorption of MnO<sub>4</sub>-</sup> ions in acidic media on fixed bed column and on the kinetic modeling of experimental data of breakthrough curves of MnO<sub>4</sub>-</sup> ions obtained. Results on the adsorption of MnO<sub>4</sub>-</sup> ions in fixed-bed dynamics obtained on AC-400 and AC-600 adsorbents beds indicated that the AC-400 bed appears to be the most efficient in removing MnO<sub>4</sub>-</sup> ions in acidic media. Indeed, the adsorbed amounts, the adsorbed capacities at saturation and the elimination percentage of MnO<sub>4</sub>-</sup> ions obtained with AC-400 (31.24 mg;52.06 mg·g<sup>-1</sup> and 41.65% respectively) were higher compared to those obtained with AC-600 (9.87 mg;16.45 mg·g<sup>-1</sup> and 17.79% respectively). The breakthrough curves kinetic modeling revealed that the Thomas model and the pseudo-first-order kinetic model were the most suitable models to describe the adsorption of MnO<sub>4</sub>-</sup> ions on adsorbents studied in our experimental conditions. The results of the intraparticle diffusion model showed that intraparticle diffusion was involved in the adsorption mechanism of MnO<sub>4</sub>-</sup> ions on investigated adsorbents and was not the limiting step and the only process controlling MnO<sub>4</sub>-</sup> ions adsorption. In contrast to AC-400, the intraparticle diffusion on AC-600 bed plays an important role in the adsorption mechanism of MnO<sub>4</sub>-</sup> ions.
文摘Antibiotic-loaded poly (methyl methacrylate) bone cement (ALBC) is widely used for anchoring joint replacements as a means of reducing the potential for peri-prosthetic joint infection (primary cases) and treating a patient who has an infected joint replacement (revision cases). One shortcoming of the cement is the high maximum exothermic temperature experienced upon polymerization (Tmax), a phenomenon that, it has been postulated, may cause or be implicated in thermal necrosis of peri-prosthetic tissues. There are many reports in the literature on methods of reducing Tmax, with one such study involving the addition of a phase change material (microencapsulated paraffin) (MEPAR) to the cement powder or adding a chain-stopping chemical (1-dodecyl mercaptan) (DDM) to the liquid. In that report, the results of gentamicin elution tests were presented. In the present work, those results were used to calculate various indices of gentamicin elution kinetics, namely 1) diffusion coefficient (Dgent);and 2) values of the coefficients in four equations that are widely used to model antibiotic elution from ALBCs. We found 1) the difference in Dgent of either a MEPAR- or DDM-containing formulation, on the one hand, and that of the control cement, on the other, was not significant;and 2) a consistent trend in the value of only one coefficient in one of the four model equations, with this change suggesting insignificant difference in gentamicin elution mechanism between an experimental cement formulation and the control cement. The implications of these findings for guiding selection of additives that simultaneously produce significant reduction of Tmax but minimal effect on gentamicin elution kinetics are discussed. This guide is a novel contribution to the literature.