A simple model is described to simulate kinetic processes in dielectric barrier dis-charges for O2/NOx mixtures. A threshold of ozone production found experimentally is confirmedby the calculations of this modeling, a...A simple model is described to simulate kinetic processes in dielectric barrier dis-charges for O2/NOx mixtures. A threshold of ozone production found experimentally is confirmedby the calculations of this modeling, and the underiying chemical reaction mechanisms are dis-cussed. It is also found that the effects of diffusion processes in the period of the lifetime of Oatoms are not important to microdischarge channels with a large radius, i.e. larger than l50 μm.展开更多
The effects of blade lean and vortex design on the aerodynamics of a turbine entry nozzle guide vane (NGV) are considered using computational fluid dynamics. The aim of the work is to address some of the uncertainti...The effects of blade lean and vortex design on the aerodynamics of a turbine entry nozzle guide vane (NGV) are considered using computational fluid dynamics. The aim of the work is to address some of the uncertainties which have arisen from previous studies where conflicting results have been reported for the effect on the NGV. The configuration was initially based on the energy efficient engine turbine which also served as the validation case for the computational method. A total of 17 NGV configurations were evaluated to study the effects of lean and vortex design on row efficiency and secondary kinetic energy. The distribution of mass flow ratio is introduced as an additional factor in the assessment of blade lean effects. The results show that in the turbine entry NGV, the secondary flow strength is not a dominant factor that determines NGV losses and therefore the changes of loading distribution due to blade lean and the associated loss mecha- nisms should be regarded as a key factor. Radial mass flow redistribution under different NGV lean and twist is demonstrated as an addition key factor influencin~ row efficiency.展开更多
A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in th...A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry.展开更多
文摘A simple model is described to simulate kinetic processes in dielectric barrier dis-charges for O2/NOx mixtures. A threshold of ozone production found experimentally is confirmedby the calculations of this modeling, and the underiying chemical reaction mechanisms are dis-cussed. It is also found that the effects of diffusion processes in the period of the lifetime of Oatoms are not important to microdischarge channels with a large radius, i.e. larger than l50 μm.
基金the support of Cranfield University and China Aviation Powerplant Research Institute of AVIC
文摘The effects of blade lean and vortex design on the aerodynamics of a turbine entry nozzle guide vane (NGV) are considered using computational fluid dynamics. The aim of the work is to address some of the uncertainties which have arisen from previous studies where conflicting results have been reported for the effect on the NGV. The configuration was initially based on the energy efficient engine turbine which also served as the validation case for the computational method. A total of 17 NGV configurations were evaluated to study the effects of lean and vortex design on row efficiency and secondary kinetic energy. The distribution of mass flow ratio is introduced as an additional factor in the assessment of blade lean effects. The results show that in the turbine entry NGV, the secondary flow strength is not a dominant factor that determines NGV losses and therefore the changes of loading distribution due to blade lean and the associated loss mecha- nisms should be regarded as a key factor. Radial mass flow redistribution under different NGV lean and twist is demonstrated as an addition key factor influencin~ row efficiency.
基金supported by the National Natural Science Foundation of China(51834008,52022109,52274307,and 21804319)National Key Research and Development Program of China(2021YFC2901100)+1 种基金Science Foundation of China University of Petroleum,Beijing(2462022QZDX008,2462021QNX2010,2462020YXZZ019 and 2462020YXZZ016)State Key Laboratory of Heavy Oil Processing(HON-KFKT2022-10).
文摘A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry.